8 resultados para Coho salmon fishing

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hemorrhagic disease, caused by the grass carp reovirus (GCRV), is one of the major diseases of grass carp in China. Little is known about the structure and function of the gene segments of this reovirus. The S10 genome segment of GCRV was cloned and the complete nucleotide sequence is reported here. The S10 is 909 nucleotides long and contains a large open reading frame (ORF) encoding a protein of 276 amino acids with a deduced molecular weight of approximately 29.7 kDa. Comparisons of the deduced amino acid sequence of GCRV S10 with those of other reoviruses revealed no significant homologies. However, GCRV S10 shared a putative zinc-finger sequence and a similar distribution of hydrophilic motifs with the outer capsid proteins encoded by Coho salmon aquareovirus (SCSV) S10, striped bass reovirus (SBRV) S10, and mammalian reovirus (MRV) S4. It was predicted that this segment gene encodes an outer capsid protein.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Further to the previous finding of the rainbow trout rtCATH_1 gene, this paper describes three more cathelicidin genes found in salmonids: two in Atlantic salmon, named asCATH_1 and asCATH_2, and one in rainbow trout, named rtCATH_2. All the three new salmonid cathelicidin genes share the common characteristics of mammalian cathelicidin genes, such as consisting of four exons and possessing a highly conserved preproregion and four invariant cysteines clustered in the C-terminal region of the cathelin-like domain. The asCATH_1 gene is homologous to the rainbow trout rtCATH_1 gene, in that it possesses three repeat motifs of TGGGGGTGGC in exon IV and two cysteine residues in the predicted mature peptide, while the asCATH_2 gene and rtCATH_2 gene are homologues of each other, with 96% nucleotide identity. Salmonid cathelicidins possess the same elastase-sensitive residue, threonine, as hagfish cathelicidins and the rabbit CAP18 molecule. The cleavage site of the four salmonid cathelicidins is within a conserved amino acid motif of QKIRTRR, which is at the beginning of the sequence encoded by exon W. Two 36-residue peptides corresponding to the core part of rtCATH_1 and rtCATH_2 were chemically synthesized and shown to exhibit potent antimicrobial activity. rtCATH_2 was expressed constitutively in gill, head kidney, intestine, skin and spleen, while the expression of rtCATH_1 was inducible in gill, head kidney, and spleen after bacterial challenge. Four cathelicidin genes have now been characterized in salmonids and two were identified in hagfish, confirming that cathelicidin genes evolved early and are likely present in all vertebrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

FUNCTIONAL-FORM GROUPS; RED ALGAE; ATLANTIC SALMON; NEW-HAMPSHIRE; NITROGEN; PHOSPHORUS; RHODOPHYTA; TEMPERATURE; NUTRIENTS; KJELLMAN

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A cluster of 11 interferon (IFN) genes were identified in the Atlantic salmon genome linked to the growth hormone I gene. The genes encode three different IFN subtypes; IFNa (two genes), IFNb (four genes) and IFNc (five genes), which show 22-32% amino acid sequence identity. Expression of the fish IFNs were studied in head kidney, leukocytes or To cells after stimulation with the dsRNA poly I:C or the imidazoquinoline S-27609. In mammals, poly I:C induces IFN-beta through the RIG-I/MDA5 or the TLR3 pathway, both of which are dependent on NF-kappa B. In contrast, S-27609 induces mammalian IFN-alpha in plasmacytoid dendritic cells through the TLR7 pathway independent of NF-kappa B. The presence of an NF-kappa B site in their promoters and their strong up-regulation by poly I:C, suggest that salmon IFNa1/IFNa2 are induced through similar pathways as IFN-beta. In contrast, the apparent lack of NF-kappa B motif in the promoter and the strong upregulation by S-27609 in head kidney and leukocytes, suggest that IFNb genes are induced through a pathway similar to mammalian IFN-alpha. IFNc genes showed expression patterns different from both IFNa and IFNb. Taken together, salmon IFNa and IFNb are not orthologs of mammalian IFN-beta and IFN-alpha, respectively, but appear to utilize similar induction pathways. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The thermophily, fishing season and central fishing ground of Japanese pilchard (Sardinops melanosticta) were studied by using satellite remote sensing (SRS) and other methods in Haizhou Bay and Tsushima waters during 1986-1990. A rapid prediction method of fishing ground is presented. Moreover, the results indicated that the thermophilic values of the fish stock are 11-20 degrees C and both fishing grounds are in increasing temperature process from the beginning to the end of the fishing period. The Japanese pilchards gather vigorously at the sea surface temperature of 15-17 degrees C. The water temperature is a key factor affecting the fishing season and the catch of the fishing ground. The increasing temperature process restricts the fishing season development and central fishing ground formation. The accuracy of 15 predictions made in the Haizhou Bay fishing ground is up to 91.3%, and 37 predictions made in the Tsushima, fishing ground shorten the fish detection time by 13.4% - 22% on the average.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A species-specific SCAR marker for rainbow trout, which was used to detect adulteration and fraudulent labeling in Atlantic salmon products, has been developed based on the AFLP analysis and evaluated in this study. The SCAR marker could be amplified and visualized in 1% agarose gel in all tested rainbow trout samples and absent in all salmon samples. Using DNA admixtures, the detection of 1% (0.5 ng), 10% (5 ng) rainbow trout DNA in Atlantic salmon DNA for fresh and processed samples, respectively was readily achieved. The molecular approach was sensitive and demonstrated to be a rapid and reliable method for identifying frauds in salmon products and could be extended for applications of species identification in food industry.