14 resultados para Citrus aurantiifolia, adverse effects
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This study was designed to determine cytotoxic effects of PBDE-47 and HBCDs individually or with a mixture of both compounds exposure to Hep G2 cells. The results showed PBDE-47 and HBCDs induced increase of nitric oxide synthase (NOS) activity, release of NO. dissipation of mitochondria membrane potential and cell apoptosis. Exposure to HBCDs induced ROS formation. Moreover, preincubation with PTIO (NO scavanger) and N-acetylcysteine (ROS scavanger) partially reversed cytotoxic effects of these compounds. The possible mechanism is that PBDE-47 and HBCDs could boost generation of NO and/or ROS, impact mitochondria, and result in start-ups of apoptosis program. Cells exposed to mixture of both compounds and each of them showed non-apoptotic rate significant difference, but the combination of them caused more adverse effects on cells. These results Suggest that PBDE-47 and HBCDs in single and complex exposure have the cytotoxic activity of anti-proliferation and induction of apoptosis in tumor cells in vitro. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A novel method for measuring the coma of a lithographic projection system is proposed and the principle of the method is described. By utilizing mirror-symmetry marks, the adverse effects of axial aberrations on the coma measurement are avoided. Experimental results demonstrated that the method has high accuracy. Compared with TAMIS, the conventional technique used for coma measurement, the method is more reliable because the influences of the process factors on the lateral displacements have been considered. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The planktivorous filter-feeding silver carp (Hypophthalmichthys molitrix) and bighead carp (Aristichthys nobilis) are the attractive candidates for bio-control of plankton communities to eliminate odorous populations of cyanobacteria. However, few studies focused on the health of such fishes in natural water body with vigorous toxic blooms. Blood parameters are useful and sensitive for diagnosis of diseases and monitoring of the physiological status of fish exposed to toxicants. To evaluate the impact of toxic cyanobacterial blooms on the planktivorous fish, 12 serum chemistry variables were investigated in silver carp and bighead carp for 9 months, in a large net cage in Meiliang Bay, a hypereutrophic region of Lake Taihu. The results confirmed adverse effects of cyanobacterial blooms on two phytoplanktivorous fish, which mainly characterized with potential toxicogenomic effects and metabolism disorders in liver, and kidney dysfunction. In addition, cholestasis was intensively implied by distinct elevation of all four related biomarkers (ALP, GGT, DBIL, TBIL) in bighead carp. The combination of LDH, AST activities and DBIL, URIC contents for silver carp, and the combination of ALT. ALP activities and TBIL, DBIL. URIC concentrations for bighead carps were found to most strongly indicate toxic effects from cyanobacterial blooms in such fishes by a multivariate discriminant analysis. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Oxidative stress response after prolonged exposure to a low dose of microcystins (MCs) was studied in liver, kidney and brain of domestic rabbits. Rabbits were treated with extracted MCs (mainly MC-LR and MC-RR) at a dose of 2 MC-LReq. mu g/kg body weight or saline solution every 24 h for 7 or 14 days. During the exposure of MCs, increase of lipid peroxidation (LPO) levels were detected in all the organs studied, while antioxidant enzymes responded differently among different organs. The enzyme activities Of Superoxide dismutase (SOD). catalase (CAT) and glutathione reductase (GR) in liver decreased in the MCs treated animals. In brain, there were obvious changes in glutathione peroxidase (GPx) and GR, while only CAT was obviously influenced in kidney. Therefore, daily exposure at a lower dosage of MCs, which mimicked a natural route of MCs. could also induce obvious oxidative stress in diverse organs of domestic rabbits. The oxidative stress induced by MCs in brain was as serious as in liver and kidney, suggesting that brain may also be a target of MCs in mammals. And it seems that animals may have more time to metabolize the toxins or to form an adaptive response to reduce the adverse effects when exposed to the low dose of MCs. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Microcystins are cyclic heptapeptide hepatoxins produced by many species of cyanobacteria. The toxic effects and mechanism of microcystins on animals have been well studied both in vivo and in vitro. It was also reported that microcystins had adverse effects on plants. However, to our knowledge, there is no information about the toxic effects and mechanism of microcystins on plant suspension cells. In this study, Arabidopsis thaliana suspension cells were exposed to a range dose of microcystin-RR. Lipid peroxidation, a main manifestation of oxidative damage, was studied and a time- and dose-dependent increase in malondiadehyde was observed. In contrast, glutathione (GSH) levels in the cells decreased after 48 h treatment with 1 and 5 mg/L of microcystin-RR. The activities of superoxide dismutase (SOD) and catalase (CAT) increased significantly after 48 h exposure to I and 5 mg/L of microcystin-RR, but glutathione S-transferase (GST) activity showed no difference compared with the control. These results clearly indicate that microcystin-RR is able to cause oxidative damage in A. thaliana suspension cells. Decrease of GSH content and increases of SOD and CAT activities reveal that the antioxidant system may play an important role in eliminating or alleviating the toxicity of microcystin-RR. The possible toxicity mechanism of microcystin-RR on the A. thaliana suspension cells is also discussed in this paper. (C) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Microcystins are cyclic heptapeptide hepatoxins produced by cyanobacteria. It has been shown that microcystins have adverse effects on animals and on plants as well. Previous researches also indicated that microcystins were capable of inducing oxidative damage in animals both in vivo and in vitro. In this study, tobacco BY-2 suspension cell line was applied to examine the effects of microcystin-RR on plant cells. Cell viability and five biochemical parameters including reactive oxygen species (ROS), superoxide dismutase (SOD), catalase (CAT), glutathione peroxide (GPX) and peroxide dismutase (POD) were investigated when cells were exposed to 50 mg/L microcystin-RR. Results showed that microcystin-RR evoked decline of the cell viability to approximately 80% after treating for 144 h. ROS levels, POD and GPX activities of the treated cells were gradually increased with a time dependent manner. Changes of SOD and CAT activities were also detected in BY-2 cells. After 168 h recovery, ROS contents, POD, GPX and CAT activities returned to normal levels. These results suggest that the microcystin-RR can cause the increase of ROS contents in plant cells and these changes led to oxidant stress, at the same time, the plant cells would improve their antioxidant abilities to combat mirocystin-RR induced oxidative injury. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Hydroxylated polychlorinated biphenyls (OH-PCBs a group of main active metabolites of polychlorinated biphenyl (PCBs) which are typical persistent organic pollutants (Pops) I have been identified in wild animals and human. The endocrine disruption of OH-PCBs has been drawn great attention due to the similarity of their chemical structures to the natural estrogens and thyroid hormones. The metabolic pathways of PCBs, the levels of OHPCBs in organism, the endocrine disruption and other adverse effects of OH-PCBs are reviewed. The further investigation of OH-PCBs will not only reveal the toxicological mechanism of PCBs, but also can lay scientific basis for setting up the risk assessment of POPs contamination and early-warning system in China.
Resumo:
Estrogenic activities of emission samples generated by fossil fuel combustion were investigated with human estrogen receptor (ER) recombinant yeast bioassay. The results showed that there were weak but clear estrogenic activities in combustion emissions of fossil fuels including coal, petroleum, and diesel. The estrogenic relative potency (RP) of fossil fuel combustion was the highest in petroleum-fired car, followed by coal-fired stove, diesel-fired agrimotor, coal-fired electric power station. On the other hand, the estrogenic relative inductive efficiency (RIE) was the highest in coal-fired stove and coal-fired electric power station, followed by petroleum-fired car and diesel-fired agrimotor. The estrogenic activities in the sub-fractions from chromatographic separation of emitted materials were also determined. The results indicated that different chemical fractions in these complex systems have different estrogenic potencies. The GC/MS analysis of the emission showed that there were many aromatic carbonyls, big molecular alcohol, PAHs and derivatives, and substituted phenolic compounds and derivatives which have been reported as environmental estrogens. The existence of estrogenic substances in fossil fuel combustion demands further investigation of their potential adverse effects on human and on the ecosystem. The magnitude of pollution due to global usage of fossil fuels makes it imperative to understand the issue of fossil fuel-derived endocrine activities and the associated health risks, particularly the aggregated risks stemmed from exposure to toxicants of multiple sources. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
5-氟尿嘧啶(5-Fluorouracil, 5-FU)是一种抗代谢药物,广泛用于临床治疗结直肠癌、胃癌、乳腺癌等多种癌症,但其首过代谢显著、亲脂性较低,选择性差、毒副作用大。为克服这些缺点人们对5-FU进行了大量的修饰工作,包括小分子修饰以及与各种载体形成微球、微囊、纳米粒、共价前药等。 环糊精(Cyclodextrin,简称CD),可被结肠中的糖苷酶特异性地降解成小分子糖,而胃和小肠中由于缺乏相应的酶而使环糊精不被降解,这一特性在结肠药物的靶向输送及释放中有重要应用价值。环糊精中含有丰富的羟基,易进行化学修饰,将药物与环糊精通过共价键结合制成前药,使其在胃和小肠中不降解,而在盲结肠中被特异性的酶降解释出药物,达到结肠靶向释药的目的。研究表明,环糊精作为一种前药载体为结肠靶向释药和缓释、控释系统提供了一种有效的手段。 本工作选择5-氟尿嘧啶为模型药物、β-环糊精作为载体,通过中间体5-FU羧酸衍生物的制备及其与β-环糊精的偶联,合成了系列5-FU-β-CD前体药物,并利用紫外、红外、质谱、核磁、元素分析、热分析等手段对其进行结构表征。同时,还研究了前体药物的体外释药性质。具体内容包括: 1. 含有羧基的5-FU衍生物中间体的合成:(5-氟尿嘧啶-1-基)-乙酸(FUAC)、3-(5-氟尿嘧啶-1-基)-丙酸(FUPC)、5-(5-氟尿嘧啶-1-基)-戊酸(FUVC)的合成。 2. 中间体5-FU的羧酸衍生物与β-CD的偶联:分别通过以6-OTs-β-CD为中间体的取代法和活化酯法,合成了第一面取代和第二面取代的5-FU-β-CD大分子前体药物。在二面取代的前体药物制备中,通过改变原料的比例,合成了系列不同取代度(DS)的2-[(5-氟尿嘧啶-1-基)-乙酰基] -β-环糊精结合物。 3. 对上述前体药物进行体外释放研究:分别考察了前体药物在不同pH缓冲溶液中的水解行为及其在小鼠胃肠道人工体液中的酶解行为,并通过UV-Vis及HPLC对前体药物释放情况进行检测分析。 5-Fluorouracil(5-Fu), commonly known as a broad-spectrum antineoplastic drug, has been widely used in the treatment of various kinds of cancer including colon cancer for 40 years. However, this antitumor agent exhibits serious adverse effects, such as their marrow toxicity, gastrointestinal reaction and low selectivity in their clinical use. In order to improve its antitumor activity and reduce its toxicity, the compound was modified in various ways, including the formation of conjugated prodrugs with kinds of carrier, microsphere and nanoparticles etc. Cyclodextrins(CDs) are known to be barely capable of being hydrolyzed and only slightly absorbed in passing through the stomach and small intestine; however they are fermented into small saccharides by colonic microflora and thus absorbed as small saccharides in the large intestine. This biodegradation property of CDs may be useful as a colon-targeting carrier, and thus CD prodrugs may serve as a source of site-specific delivery of drugs to colon. It was demonstrated that prodrugs of CDs can provide a versatile means for construction of not only colon targeted delivery systems, but also delayed release systems. 5-Fluorouracil was taken as a model drug and β-CD as the carrier in this study. Series prodrugs of 5-FU was prepared through the preparation of reactive 5-FU derivatives containing carboxyl group and coupling to hydroxyl groups of CD. The structures of the conjugates were charactered by using IR, UV–vis, ESI-MS, 1H, 13C-NMR spectra, elemental analyses, and thermal analysis. In vitro hydrolysis behavior in aqueous solution and in rat gastrointestinal tract contents of the conjugates were also investigated. The main content of this dissertation includes following aspects: 1. The preparation of 5-FU derivatives containing carboxyl group: 5-Fluorouracil- acetic acid(FUAC)、3-(5-FU-1)-propionic acid (FUPC)、and 5-(5-FU-1)-valeric acid(FUVC). 2. The coupling of 5-FU derivatives to β-CD: 5-FU was selectively conjugated onto the primary or secondary hydroxyl groups of β-CD through an ester linkage, by the substitution of 6-OTs-β-CD and the activated ester method respectively. For the secondary face conjugation, the degree of substitution(DS) can be controlled by changing the mole ratio of the starting materials(FUAC and β-CD). 3. In vitro release behavior of the conjugates in aqueous solution and in rat gastro- intestinal tract contents of the conjugates were investigated, and the reaction was monitored and analyzed by using UV-Vis and HPLC methods.
Resumo:
Due to the potentially adverse effects of the chromium (VI) on the human health and also on the environment, the quantitative determination of Cr(VI) is of particular interest. This work herein reports a facile, selective and rapid colorimetric determination of Cr(VI) based on the peroxidase substrate-2,2'-azino-bis(3-ethylbenzo-thiazoline-6-sulfonic acid) diammonium salt (ABTS) as the color developing agent. ABTS, which was usually acted as peroxidase substrate for the enzyme linked immunosorbent assay, is used here for the first time to fabricate the "signal-on" colorimetric Assay for Cr(VI).
Resumo:
To investigate harmful effects of the dinoflagellate Alexandrium species on microzooplankton, the rotifer Brachionus plicatilis was chosen as an assay species, and tested with 10 strains of Alexandrium including one known non-PSP-producer (Alexandrium tamarense, AT-6). HPLC analysis confirmed the PSP-content of the various strains: Alexandrium lusitanicum, Alexandrium minutum and Alexandrium tamarense (ATHK, AT5-1, AT5-3, ATC102, ATC103) used in the experiment were PSP-producers. No PSP toxins were detected in the strains Alexandrium sp1, Alexandrium sp2. Exposing rotifer populations to the densities of 2000 cells ml(-1) of each of these 10 Alexandrium strains revealed that the (non-PSP) A. tarnarense (AT-6) and two other PSP-producing algae: A. lusitanicum, A. minutum, did not appear to adversely impact rotifer populations. Rotifers exposed to these three strains were able to maintain their population numbers, and in some cases, increase them. Although some increases in rotifer population growth following exposures to these three algal species were noted, the rate was less than for the non-exposed control rotifer groups. In contrast, the remaining seven algal strains (A. tamarense ATHK, AT5-1, AT5-3, ATC102, ATC103; also Alexandrium sp1 and Alexandrium sp2) all have adverse effects on the rotifers. Dosing rotifers with respective algal cell densities of 2000 cells ml-1 each, for Alexandrium spl, Alexandrium sp2, and A. tamarense strains ATHK and ATC103 showed mean lethal time (LT50) on rotifer populations of 21, 28, 29, and 36h, respectively. The remaining three species (A. tamarense strains AT5-1, AT5-3, ATC102) caused respective mean rotifer LT50S of 56, 56, and 71 h, compared to 160 h for the unexposed "starved control" rotifers. Experiments to determine ingestion rates for the rotifers, based on changes in their Chlorophyll a content, showed that the rotifers could feed on A. lusitanicum, A. minutum and A. tamarense strain AT-6, but could graze to little or no extent upon algal cells of the other seven strains. The effects on rotifers exposed to different cell densities, fractions, and growth phases of A. tamarense algal culture were respectively compared. It was found that only the whole algal cells had lethal effects, with strongest impact being shown by the early exponential growth phase of A. tamarense. The results indicate that some toxic mechanism(s), other than PSP and present in whole algal cells, might be responsible for the adverse effects on the exposed rotifers. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We report an apparently novel toxic effect of the dinoflagellate Alexandrium tamarense, manifested by inhibition of the egg hatching success of the scallop, Chlamys farreri. The hatching rate of C. farreri approached only 30% of controls when its fertilised eggs were exposed for 36 h to A. tamarense cells or cellular fragments at a concentration of 100 cells/ml, and the hatching rate was just 5% after exposure to A. tamarense of 500 cells/ml. Similar exposures of the fertilised scallop eggs to two other algal species, the diatom Phaeodactylum tricornutum and the raphidophyte Heterosigma carterae, resulted in no such toxicity or inhibitory effects.. Likewise, exposure of eggs to standard STX toxin. as well as to A. tamarense cell contents (supernant of re-suspended algal cells following ultrasonication and centrifugation), did not elicit this inhibitory response. However, exposure of the scallop eggs to cell cultures, intact algal cells, or cell fragments of A. tamarense produced marked toxicity. The alga also influenced larvae at early D-shape stage of scallop. The survival rates began to decrease significantly after exposed for 6 days at concentration of 3000 cells/ml and above: no larvae could survive after 14-day exposure to A. tamarense at 10,000 cells/ml or 20-day at 5000 cells/ml. The results indicated the production of novel substances from A. tamarense which can cause adverse effects on egg hatching and survival of the scallop larvae, The experiment also found that the developmental stages before blastula was the developmental period most sensitive to the A. tamarense toxin(s) and the alga at early exponential stage had the strongest effect on egg hatching comparing with other growth phases. The adverse effect of A. tamarense on early development of scallops may cause decline of shellfish population and may have further impact on marine ecosystem. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
There has been a growing concern about the use of fossil fuels and its adverse effects on the atmospheric greenhouse and ecological environment. A reduction in the release rate of CO2 into the atmosphere poses a major challenge to the land ecology of China. The most promising way of achieving CO2 reduction is to dispose of CO2 in deep saline aquifers. Deep aquifers have a large potential for CO2 sequestration in geological medium in terms of volume and duration. Through the numerical simulation of multiphase flow in a porous media, the transformation and motion of CO2 in saline aquifers has been implemented under various temperature and hydrostatic pressure conditions, which plays an important role to the assessment of the reliability and safety of CO2 geological storage. As expected, the calculated results can provide meaningful and scientific information for management purposes. The key problem to the numerical simulation of multiphase flow in a porous media is to accurately capture the mass interface and to deal with the geological heterogeneity. In this study, the updated CE/SE (Space and time conservation element and solution element) method has been proposed, and the Hybrid Particle Level Set method (HPLS) has extended for multiphase flows in porous medium, which can accurately trace the transformation of the mass interface. The benchmark problems have been applied to evaluate and validate the proposed method. In this study, the reliability of CO2 storage in saline aquifers in Daqingzi oil field in Sunlong basin has been discussed. The simulation code developed in this study takes into account the state for CO2 covering the triple point temperature and pressure to the supercritical region. The geological heterogeneity has been implemented, using the well known geostatistical model (GSLIB) on the base of the hard data. The 2D and 3D model have been set up to simulate the CO2 multiphase flow in the porous saline aquifer, applying the CE/SE method and the HPLS method .The main contents and results are summarized as followings. (1) The 2D CE/SE method with first and second –order accuracy has been extended to simulate the multiphase flow in porous medium, which takes into account the contribution of source and sink in the momentum equation. The 3D CE/SE method with the first accuracy has been deduced. The accuracy and efficiency of the proposed CE/SE method have been investigated, using the benchmark problems. (2) The hybrid particle level set method has been made appropriate and extended for capturing the mass interface of multiphase flows in porous media, and the numerical method for level set function calculated has been formulated. (3) The closed equations for multiphase flow in porous medium has been developed, adept to both the Darcy flow and non-Darcy flow, getting over the limitation of Reynolds number to the calculation. It is found that Darcy number has a decisive influence on pressure as well as velocity given the Darcy number. (4) The new Euler scheme for numerical simulations of multiphase flows in porous medium has been proposed, which is efficient and can accurately capture the mass interface. The artificial compressibility method has been used to couple the velocities and pressure. It is found that the Darcy number has determinant effects on the numerical convergence and stability. In terms of the different Darcy numbers, the coefficient of artificial compressibility and the time step have been obtained. (5) The time scale of the critical instability for critical CO2 in the saline aquifer has been found, which is comparable with that of completely CO2 dissolved saline aquifer. (6) The concept model for CO2 multiphase flows in the saline aquifer has been configured, based on the temperature, pressure, porosity as well as permeability of the field site .Numerical simulation of CO2 hydrodynamic trapping in saline aquifers has been performed, applying the proposed CE/SE method. The state for CO2 has been employed to take into account realistic reservoir conditions for CO2 geological sequestration. The geological heterogeneity has been sufficiently treated , using the geostatistical model. (7) It is found that the Rayleigh-Taylor instability phenomenon, which is associated with the penetration of saline fluid into CO2 fluid in the direction of gravity, has been observed in CO2 multiphase flows in the saline aquifer. Development of a mushroom-type spike is a strong indication of the formation of Kelvin-Helmholtz instability due to the developed short wavelength perturbations present along the interface and parallel to the bulk flow. Additional key findings: the geological heterogeneity can distort the flow convection. The ascending of CO2 can induce the persistent flow cycling effects. The results show that boundary conditions of the field site have determinant effects on the transformation and motion of CO2 in saline aquifers. It is confirmed that the proposed method and numerical model has the reliability to simulate the process of the hydrodynamic trapping, which is the controlling mechanism for the initial period of CO2 storage at time scale of 100 years.