112 resultados para Cathode

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A free-burning, high-intensity argon arc at atmospheric pressure was modelled during the evaporation of copper from the cathode. The effect of cathode evaporation on the temperature, mass flow, current flow and Cu concentration was studied for the entire plasma region. The copper evaporates from the tip of the cathode with an evaporation rate of 1 mg s-1. The copper vapour in the cathode region has a velocity of 210 m s-1 with a mass concentration of above 90% within 0.5 mm from the arc axis. The vapour passes from the cathode toward the anode with a slight diffusion in the argon plasma. Higher temperatures and current densities were calculated in the core of the arc caused by the cathode evaporation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic light emitting diodes employing magnesium doped electron acceptor 3, 4, 9, 10 perylenetetracarboxylic dianhydride (Mg: PTCDA) as electron injection layer and silver as cathode were demonstrated. As compared to Mg: Ag cathode, the combination of the Mg: PTCDA layer and silver provided enhanced electron injection into tris (8-quinolinolato) aluminium. The device with 1: 2 Mg: PTCDA and Ag showed an increase of about 12% in the maximum current efficiency, mainly due to the improved hole-electron balance, and an increase of about 28% in the maximum power efficiency, as compared to the control device using Mg: Ag cathode. The properties of Mg: PTCDA composites were studied as well.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field electron emission (FE) from an ultrathin multilayer planar cold cathode (UMPC) including a quantum well structure has been both experimentally and theoretically investigated. We found that by tuning the energy levels of UMPC, the FE characteristic can be evidently improved, which is unexplained by conventional FE mechanism. FE emission mechanism, dependent on the quantum structure effect, which supplies a favorable location of electron emission and enhances tunneling ability, has been presented to expound the notable amelioration. An approximate formula, brought forward, can predict the quantum FE enhancement, in which the theoretical prediction is close to the experimental result. (C) 2008 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Field emission (FE) from a single-layer ultra-thin semiconductor film cathode (SUSC) on a metal substrate has been investigated theoretically. The self-consistent quantum FE model is developed by synthetically considering the energy band bending and electron scattering. As a typical example, we calculate the FE properties of ultra-thin A1N film with an adjustable film thickness from 1 to 10 nm. The calculated results show that the FE characteristic is evidently modulated by varying the film thickness, and there is an optimum thickness of about 3 nm. Furthermore, a four-step FE mechanism is suggested such that the distinct FE current of a SUSC is rooted in the thickness sensitivity of its quantum structure, and the optimum FE properties of the SUSC should be attributed to the change in the effective potential combined with the attenuation of electron scattering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline Ge:H thin films were deposited simultaneously on both electrodes of a conventional capacitively coupled reactor for plasma enhanced chemical vapor deposition using highly H-2 diluted GeH4 as the source gas. The structure of the films was investigated by Raman scattering and X-ray diffraction as a function of substrate temperature, H-2 dilution, and r.f. power. The hydrogen concentrations and bonding configurations were determined by infrared absorption spectroscopy. For anodic deposition, the preferred crystallographic orientation and film crystallinity depend rather strongly on the deposition parameters. This dependence can be explained by changing surface mobilities of adsorbed precursors due to changes in the hydrogen coverage of the growing surface. Cathodic deposition is much less sensitive to variations in the deposition parameters. It generally results in films of high crystallinity with randomly oriented crystallizes. Some possible mechanisms for these differences between anodic and cathodic deposition are discussed. (C) 1999 Elsevier Science S.A. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel carbon-supported palladium-rich Pd3Pt1/C catalyst prepared by a modified polyol process showed a better cell performance than Pt/C in direct methanol fuel cells, which may be attributed to palladium's inactivity to methanol electro-oxidation while exhibiting good performance to oxygen reduction reaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Black Pearls 2000 (designated as BP- 2000) and Vulcan XC-72 (designated as XC-72) carbon blacks were chosen as supports to prepare 40 wt % (the targeted value) Pt/C catalysts by a modified polyol process. The carbon blacks were characterized by N-2 adsorption and Fourier tranform infrared spectroscopy. The prepared catalysts were characterized by inductively coupled plasma atomic emission spectroscopy, transmission electron microscopy, scanning electron microscopy (SEM), in situ cyclic voltammetry, and current-voltage curves. On BP- 2000, Pt nanoparticles were larger in size and more unevenly distributed than on XC-72. It was observed by SEM that the corresponding catalyst layer on BP- 2000 was thicker than that of XC-72 based catalyst at almost the identical catalyst loading. And the BP- 2000 supported catalyst gave a better single cell performance at high current densities. These results suggest that the performance improvement is due to the enhanced oxygen diffusion and water removal capability when BP- 2000 is used as cathode catalyst support. (C) 2004 The Electrochemical Society.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 40 wt% Pt/C cathode electrocatalyst with controlled Pt particle size of similar to 2.9 nm showing better performance than commercial catalyst for direct methanol fuel cell was prepared by a polyol process with water but without using stabilizing agent.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An improved aqueous impregnation method was used to prepare 40 wt% Pt/C electrocatalysts. TEM analysis of the samples showed that the Pt particles impregnated for a short time have a very narrow size distribution in the range of 1-4 nm with an average size of 2.6 nm. UV-vis spectroscopy measurements verified that the redox reaction between PtCl62- and formaldehyde took place with a slow rate at ambient temperature via a two-step reaction path, where PtCl42- serves as an intermediate. The use of the short-time-impregnated 40 wt% Pt/C as cathode electrocatalysts in direct methanol fuel cells yields better performance than that of commercial 40 wt% Pt/C electrocatalyst. Experimental evidence provides clues for the fundamental understanding of elementary steps of the redox reactions, which helps in guiding the design and preparation of highly dispersed Pt catalyst for fuel cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiwalled carbon nanotube-supported Pt (Pt/MWNT) nanocomposites were prepared by both the aqueous solution reduction of a Pt salt (HCHO reduction) and the reduction of a Pt ion salt in ethylene glycol solution. For comparison, a Pt/XC-72 nanocomposite was also prepared by the EG method. The Pt/MWNT catalyst prepared by the EG method has a high and homogeneous dispersion of spherical Pt metal particles with a narrow particle-size distribution. TEM images show that the Pt particle size is in the range of 2-5 nm with a peak at 2.6 nm, which is consistent with 2.5 nm obtained from the XRD broadening calculation. Surface chemical modifications of MWNTs and water content in EG solvent are found to be the key factors in depositing Pt particles on MWNTs. In the case of the direct methanol fuel cell (DMFC) test, the Pt/MWNT catalyst prepared by EG reduction is slightly superior to the catalyst prepared by aqueous reduction and displays significantly higher performance than the Pt/XC-72 catalyst. These differences in catalytic performance between the MWNT-supported or the carbon black XC-72-supported catalysts are attributed to a greater dispersion of the supported Pt particles when the EG method is used, in contrast to aqueous HCHO reduction and to possible unique structural and higher electrical properties when contrasting MWNTs to carbon black XC-72 as a support.