123 resultados para CRYSTALLINE FILMS
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Er-Si-O (Er2SiO5) crystalline films are fabricated by the spin-coating and subsequent annealing process. The fraction of erbium is estimated to be 21.5 at% based on Rutherford backscattering measurement. X-ray diffraction pattern indicates that the Er-Si-O films are similar to Er2SiO5 compound in the crystal structure. The fine structure of room-temperature photoluminescence of Er3+-related transitions suggests that Er has a local environment similar to the Er-O-6 octahedron. Our preliminary results show that the intensity of 1.53 mu m emission is enhanced by a factor of seven after nitrogen plasma treatment by NH3 gas with subsequent post-annealing. The full-width at half-maximum of 1.53 pm emission peak increases from 7.5 to 12.9 nm compared with that of the untreated one. Nitrogen plasma treatment is assumed to tailor Er3+ local environment, increasing the oscillator strength of transitions and thus the excitation/emission cross-section. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
E2SiO5 thin films were fabricated on Si substrate by reactive magnetron sputtering method with subsequent annealing treatment. The morphology properties of as-deposited films have been studied by scanning electron microscope. The fraction of erbium is estimated to be 23.5 at% based on Rutherford backscattering measurement in as-deposited Er-Si-O film. X-ray diffraction measurement revealed that Er2SiO5 crystalline structure was formed as sample treated at 1100 degrees C for 1 h in O-2 atmosphere. Through proper thermal treatment, the 1.53 mu m Er3+-related emission intensity can be enhanced by a factor of 50 with respect to the sample annealed at 800 degrees C. Analysis of pump-power dependence of Er3+ PL intensity indicated that the upconversion phenomenon could be neglected even under a high photon flux of 10(21) (photons/cm(2)/sec). Temperature-dependent photoluminescence (PL) of Er2SiO5 was studied and showed a weak thermal quenching factor of 2. Highly efficienct photoluminescence of Er2SiO5 films has been demonstrated with Er3+ concentration of 10(22)/cm(3), and it opens a promising way towards future Si-based light source for Si photonics. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Thin films of beta barium borate have been prepared by liquid phase epitaxy on Si2+-doped alpha-BaB2O4 (alpha-BBO, the high temperature phase of barium berate) (001) and (110) substrates. The results of X-ray diffraction indicate that the films show highly (001) preferred orientation on (001)-oriented substrates while the films grown on (110) substrates are textured with (140) orientation. The crystallinity of these films was found to depend on growth temperature, rotation rate, dip time and orientation of substrate. Growth conditions were optimized to grow films with (001) orientation on (001) substrates reproducibly. The films show second harmonic generation of 400 nm light upon irradiation with 800 nm Ti: Sapphire femtosecond laser light. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
We present a study of magnetic anisotropy by using magneto-transport and direct magnetization measurements on tensile strained (Ga,Mn)As films. The magnetic easy axis of the films is in-plane at low temperatures, while the easy axis flips to out-of-plane when temperature is raised or hole concentration is increased. This easy axis reorientation is explained qualitatively in a simple physical picture by Zeners pd model. In addition, the magneto-crystalline anisotropic resistance was also investigated experimentally and theoretically based on the single magnetic domain model. The dependence of sheet resistance on the angle between the magnetic field and [1 0 0] direction was measured. It is found that the magnetization vector M in the single-domain state deviates from the external magnetic field H direction at low magnetic field, while for high magnetic field, M continuously moves following the field direction, which leads to different resistivity function behaviors.
Resumo:
The ZnO films were deposited on c-plane sapphire, Si (0 0 1) and MgAl2O4 (1 1 1) substrates in pure Ar ambient at different substrate temperatures ranging from 400 to 750 degrees C by radio frequency magnetron sputtering. X-ray diffraction, photoluminescence and Hall measurements were used to evaluate the growth temperature and the substrate effects on the properties of ZnO films. The results show that the crystalline quality of the ZnO films improves with increasing the temperature up to 600 degrees C, the crystallinity of the films is degraded as the growth temperature increasing further, and the ZnO film with the best crystalline quality is obtained on sapphire at 600 degrees C. The intensity of the photoluminescence and the electrical properties strongly depend on the crystalline quality of the ZnO films. The ZnO films with the better crystallinity have the stronger ultraviolet emission, the higher mobility and the lower residual carrier concentration. The effects of crystallinity on light emission and electrical properties, and the possible origin of the n-type conductivity of the undoped ZnO films are also discussed. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
To investigate the effect of radiation damage on the stability and the compressive stress of cubic boron nitride (c-BN) thin films, c-BN films with various crystalline qualities prepared by dual beam ion assisted deposition were irradiated at room temperature with 300 keV Ar+ ions over a large fluence range up to 2 x 10(16) cm(-2). Fourier transform infrared spectroscopy (FTIR) data were taken before and after each irradiation step. The results show that the c-BN films with high crystallinity are significantly more resistant against medium-energy bombardment than those of lower crystalline quality. However, even for pure c-BN films without any sp(2)-bonded BN, there is a mechanism present, which causes the transformation from pure c-BN to h-BN or to an amorphous BN phase. Additional high resolution transmission electron microscopy (HRTEM) results support the conclusion from the FTIR data. For c-BN films with thickness smaller than the projected range of the bombarding Ar ions, complete stress relaxation was found for ion fluences approaching 4 x 10(15) cm(-2). This relaxation is accompanied, however, by a significant increase of the width of c-BN FTIR TO-line. This observation points to a build-up of disorder and/or a decreasing average grain size due to the bombardment. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Si thin films with different structures were deposited by plasma enhanced chemical vapor deposition (PECVD), and characterized via Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The passivation effect of such different Si thin films on crystalline Si surface was investigated by minority carrier lifetime measurement via a method, called microwave photoconductive decay (mu PCD), for the application in HIT (heterojunction with intrinsic thin-layer) solar cells. The results show that amorphous silicon (a-Si:H) has a better passivation effect due to its relative higher H content, compared with microcrystalline (mu c-Si) silicon and nanocrystalline silicon (nc-Si). Further, it was found that H atoms in the form of Si-H bonds are more preferred than those in the form of Si-H-2 bonds to passivate the crystalline Si surface. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
It is well known that the value of room-temperature conductivity sigma(RT) of boron-doped silicon films is one order lower than that of phosphorus-doped silicon films, when they are deposited in an identical plasma-enhanced chemical vapour deposition system. We use surface acoustic wave and secondary-ion mass spectrometry techniques to measure the concentration of total and electrically active boron atoms. It is shown that only 0.7% of the total amount of incorporated boron is electrically active. This is evidence that hydrogen atoms can passivate substitutional B-Si bonds by forming the neutral B-H-Si complex. By irradiating the boron-doped samples with a low-energy electron beam, the neutral B-H-Si complex converts into electrically active B-Si bonds and the conductivity can be increased by about one order of magnitude, up to the same level as that of phosphorus-doped samples.
Resumo:
Crystalline morphologies of spin-coated poly(L-lactic acid) (PLLA) thin films under different conditions are investigated mainly with atomic force microscopy (AFM) technique. When PLLA concentration in chloroform is varied from 0.01 to 1% gradually, disordered structure, rod-shape and larger spheres aggregates are observed in thin films subsequently. Under different annealing temperature, such as at 78, 102, 122 degrees C, respectively, we can find most rod-like crystalline aggregates. Interestingly, we observed that nucleation sites locate at the edge of the holes at the original crystalline stage. Then, these holes developed to form chrysanthemum-like and rods subsequently with annealing time meanwhile the size and the shape of crystalline aggregate are changed. In addition. effect of substrate and solvent on morphology is also discussed. On the other hand, the possible mechanism of crystalline morphology evolution is proposed.
Resumo:
Micro-banded textures developed from thin films of a main-chain thermotropic liquid crystalline chloro-poly(aryl ether ketone) in the melt were investigated using transmission electron microscopy (TEM). selective area electron diffraction, and atomic force microscopy techniques. The micro-banded textures were formed in the copolymer thin films after annealing at temperatures between 320 and 330degreesC, where a highly ordered smectic crystalline phase is formed without mechanical shearing. The micro-banded textures displayed a sinusoidal-like periodicity with a spacing of 150 nm and an amplitude of 2 rim. The long axis of the banded texture was parallel to the b-axis of an orthorhombic unit cell. In the convex regions, the molecular chains exhibited a homeotropic alignment, i.e. the chain direction was parallel to the film normal. In the concave re-ions, the molecular chains possessed a tilted alignment. In addition to the effects of annealing temperatures and times, the thickness of the film played a vital role in the formation of the banded texture. A possible formation mechanism of this banded texture vas also suggested and discussed. It was suggested that the micro-bands were formed during cooling.
Resumo:
A polymer dispersion consisting of soft latex spheres with a diameter of 135 nm was used to produce a crystalline film with face-centered cubic (fcc) packing of the spheres. Different from conventional small-molecule and hardsphere colloidal crystals, the crystalline latex film in the present case is soft (i.e., easily deformable). The structural evolution of this soft colloidal latex film under stretching was investigated by in-situ synchrotron ultra-small-angle X-ray scattering. The film exhibits polycrystalline scattering behavior corresponding to fcc structure. Stretching results not only in a large deformation of the crystallographic structure but also in considerable nonaffine deformation at high draw ratios. The unexpected nonaffine deformation was attributed to slippage between rows of particles and crystalline grain boundaries. The crystalline structure remains intact even at high deformation, suggesting that directional anisotropic colloidal crystallites can be easily produced.
Resumo:
Crystallization and phase behavior in solution-cast thin films of crystalline syndiotactic 1,2-polybutadiene (s-1,2-PB) and isotactic polypropylene (i-PP) blends have been investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM) techniques. Thin films of pure s-1,2-PB consist of parallel lamellae with the c-axis perpendicular to the film plane and the lateral scale in micrometer size, while those of i-PP are composed of cross-hatched and single-crystal-like lamellae. For the blends, TEM and AFM observations show that with addition of i-PP, the s-1,2-PB long lamellae become bended and i-PP itself tends to form dispersed convex regions oil a continuous s-1,2-PB phase even when i-PP is the predominant component, which indicates a strong phase separation between the two polymers during film formation. FESEM micrographs of both lower and upper surfaces of the films reveal that the s-1,2-PB lamellae pass through i-PPconvex regions from the bottom, i.e. the dispersed i-PP regions lie on the continuous s-1,2-PB phase. The structural development is attributed to an interplay of crystallization and phase separation of the blends in the film forming process.
Resumo:
The banded textures in the films of a thermotropic liquid crystalline poly(aryl ether ketone) containing a lateral chloro group have been studied by means of transmission electron microscopy(TEM), electron diffraction(ED) and atomic force microscopy (AFM). The crystallization-induced Landed texture without external shear can be formed when the thin films were annealed at the temperature range(320-330 degrees C) of the liquid crystalline state from the melt, The results show that the banded regions have high orientation of single crystal based on the orthorhombic packing and the growing direction of the Lands is along the b axis of the crystals, This kind of single crystal-like bands is due to the different orientation of the packing molecular chains, The molecular chains of the dark bands in the bright field electron micrograph are perpendicular to the film plane, while the ones of the bright Lands are tilt along the b axis with the tilt angle upto +/-20 degrees.
Resumo:
The homoepitaxial crystallization in the films of a thermotropic liquid crystalline chloro-ply(aryl ether ketone) is studied by transmission electron microscopy (TEM) and electron diffraction (ED). The homoepitaxy takes place in the temperature range 330-320 degreesC, in which a highly-ordered smectic crystalline phase of the copolymer with a single-crystal-like banded structure is formed during the cooling process from the isotropic melt. The homoepitaxial crystallizations with angles of 32 degrees and 122 degrees between the two b axes are the major populations observed, and possess epitaxial contact planes of (100)(I)-(210)(II) and (010)(I)-(210)(II); respectively.