4 resultados para COX-1
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
非甾体类抗炎药(NSAIDs)是临床较常用的处方药,是高效的止痛、退热和抗炎药。NsADs有广泛的临床适应证,尤其适用于各种急、慢性关节炎,软组织风湿症、运动性损伤、头痛、痛经、拔牙后痛以及癌性疼痛等。因此,NsAIDs一直是世界上处方量最大的药物之一,包括我国在内的各国NSAIDs消耗量都呈明显上升趋势。仅疼痛控制部分,预计2007年就将达到300亿美元[l]。但是,大多数NSAIDs,尤其是我国目前使用的NSAIDs,都有较大的毒性和副作用。最新的分子生物学实验证明,各种NSAIDs起治疗作用的基础是通过抑制环氧合酶(cox),阻断致炎介质前列腺素类化合物的合成。环氧合酶至少包括两种同功酶(可能还有未被发现的新的亚类型),COX-1和COX-2。COX-1主要发挥生理性管家功能;COx-2主要为诱导型,在正常组织内活性极低,当受到某些细胞因子、促有丝分裂物质和内毒素刺激时大量表达,相应引起致炎介质的增加,使炎症加重。这些区别为设计兼具高抗炎活性和低毒性的药物提供了可能。阿司匹林是最早获得应用的NSAIDs,随后又出现一批其它NSADOs,最近美国FDA批准上市的罗非考昔,西乐葆是较好的COX-2选择性抑制剂,但是售价过于昂贵,从费用上考虑较难维持长期服用。至今我国还没有具有自主知识产权的COX-2特异性NSAIDs,服用的NSAIDs中,国外更新淘汰多年的毒副作用较大的药物仍占有较大比重,所以开发具有我们自主知识产权的新型NSAIDs迫在眉睫。鉴于COX-1,COX-2酶晶体结构明确,NSAIDs筛选模型确定,尤其是我国传统的中医药对炎症的独特认识,所以,凭借现代医学和化学知识,结合中国传统的中医药知识开发具有我们自主知识产权的新型NSAIDs是切实可行的。在研究过程中我们发现,在中国传统的中医药体系里,冰片是一种独特的药物,其主要成分为结构明确的龙脑、异龙脑。中医文献对其性质和应用详细的记载表明,其不仅广泛地用于抗风湿,而且其性质符合现代药物概念中的“靶向药物”概念。所以,如果合理设计使龙脑负载有抗炎结构化合物,可能会明显改善原药物的COX-2选择性,从而开发一种或几种COX-2特异性抑制剂。据此,又参考COX-2酶晶体结构,设计合成了其他结构的可能具有抗炎活性的药物分子。小茵香醇是龙脑和异龙脑的同分异构体和结构类似分子,我们选择该分子代替龙脑和异龙脑与布洛芬结合,并进行了活性测试和筛选,以深人了解该类分子。(1)设计并合成了含龙脑、异龙脑和小茵香醇结构的分子。相应结构见Tablel。(2)因为该类分子具有比较高的位阻,所以反应惰性较大,经过实验发现,在丁基锂/四氢吠喃反应体系或二环己基碳二亚胺仁甲氨基毗咙反应体系条件下,反应能够顺利进行。其中,二环己基碳二亚脚二甲氨基毗陡反应体系产率稍高。(3)针对几个主要反应详细探讨了分离纯化条件,为将来的放大实验或规模化制备提供了条件,并对所有产品进行了详细的结构表征。(4)通过“药物对小鼠腹腔巨噬细胞生成COX-1和COX-2的抑制作用”实验,对所获得的化合物进行了初步的活性评价,并得出如下结果:(a)在所设计的分子中,化合物3和化合物8分子表现出一定的COX-2选择性,其IC50COX-1/ IC50COX-2的比值分另为6.663和6.835,稍优于目前使用的第二代NSAIDs。见第七章Tablel,Table 2 and Figurel。(b)在所设计的分子中,化合物13,即布洛芬小菌香醇酷表现出最好的选择性;IC50COX-1/IC50COX-2比值为21.006,普遍超出目前使用的大部分NSAIDs,如果经过进一步的分子设计或修改有可能获得更好的结果。(c)化合物13与化合物9和化合物10相比较,选择性明显更好。即小茵香醇醋比龙脑酷和异龙脑醋表现出更好的靶向性。(d)从得到的结果可以看出,龙脑所负载的分子的选择性普遍比异龙脑要强,对于阿司匹林表现的尤为明显。(e)在中医药的文献和典籍中,关于小茵香醇性质和应用的记载很少,我们的研究结果表明它可能具有潜在的还不为我们所了解的特殊性质,我们的研究也可能会促进对该化合物的研究。(f)以佐剂关节炎模型对乙酰水杨酸龙脑醋进行了活性评价。
Resumo:
人类的载脂蛋白A5(apolipoprotein A5,APOA5)是一个新近发现的载脂蛋白家族成员。它在血浆中的含量比其他载脂蛋白低1-2个数量级,但能显著影响血浆三酰甘油水平,对血脂代谢具有重要意义,可以作为降血脂药物治疗中一个强有力的潜在靶标。 由于APOA5在血浆中含量低,直接从血浆中分离纯化很困难,国内一直没有报道简易可靠的纯化方法。为进一步研究APOA5的生物学特性,探讨其与TG代谢中的其它关键成分之间的相互关系,揭示其在脂类代谢相关疾病中的重要地位,必须有大量的蛋白和抗体用于基础研究。因此本研究首先利用基因工程技术,诱导表达纯化APOA5蛋白,免疫动物制备多克隆抗体,为进一步研究人肝脏细胞中APOA5的相互作用蛋白,研究APOA5蛋白在肝脏细胞中的功能奠定基础。 为了深入研究APOA5在肝脏中如何行使功能,我们采用细菌双杂交技术寻找与APOA5相互作用的蛋白因子。并采用Pull-down技术,免疫荧光及免疫共沉淀技术进一步确证其在体外和体内的相互作用关系,为进一步阐明APOA5在体内的生理功能提供了新的线索。 第一部分 APOA5基因的克隆、原核表达、纯化及其多克隆抗体的制备 本研究首先应用基因克隆技术,从人肝癌细胞系SMMC-7721的cDNA中扩增出1.1 kb的ApoA5基因全长序列。然后将其克隆至表达载体pThioHisD,构建原核表达载体pTH-APOA5。该重组质粒转化至大肠杆菌 BL21(DE3),成功实现人APOA5融合蛋白在大肠杆菌中的表达。经发酵得到高效表达的融合蛋白。 融合蛋白在 IPGT 诱导下以包涵体的形式大量表达。利用融合蛋白上的一段组氨酸序列,用镍离子亲和柱进行纯化和复性后,获得较高纯度的人APOA5融合蛋白。利用该融合蛋白免疫新西兰大耳白兔,获得了高效价的兔抗人APOA5多克隆抗体,Western Blot结果显示此多克隆抗体与APOA5特异性结合。 第二部分 细菌双杂交筛选与APOA5相互作用的蛋白 本实验首先构建了pBT-APOA5重组质粒,经双酶切、PCR和测序鉴定证明重组诱饵质粒构建成功,并进行了表达、自激活鉴定。Western Blot鉴定证实报告菌株中表达了分子量为 68 kD左右的重组融合蛋白,与预测的分子量APOA5(41 kD)/lamda cI (27 kD)一致。自激活实验证明诱饵蛋白不能单独激活报告基因,可用于筛选人肝脏cDNA文库。经过双重抗性筛选和回复筛选,分离出10个阳性克隆。对结果进行生物信息学分析,得到7个与APOA5相互作用的蛋白,其中BI1为细胞凋亡调节因子;ATP6、CYTB、ND2、COX-1为线粒体表达蛋白; ALB、TTR为血清蛋白。 第三部分 APOA5与BI1相互作用的确证 首先构建了BI1的原核表达载体pGEX-5X-3-BI1,利用Pull-down实验检测了APOA5与BI1在体外具有相互作用。然后构建了BI1的真核表达载体pCDNA3.1-HA-BI1和APOA5的真核表达载体pCDNA3.1-APOA5,并验证其表达。通过免疫荧光细胞内共定位研究发现,靶蛋白APOA5主要分布于胞浆,与BI1在HEK293细胞有共定位,即APOA5与BI1存在相互作用的可能。最后利用免疫共沉淀手段,在HEK293细胞中确证了靶蛋白APOA5与BI1在体内的相互作用。 上述研究结果,为深入研究APOA5在体内的生物学功能提供了新的思路。 Apolipoprotein A5 (APOA5) is a newly discovered protein belongs to apolipoprotein family. APOA5’s concentration is 1-2 orders of magnitude lower than other apolipoproteins in the circulation. APOA5 significantly affected plasma triglyceride levels, which is important on lipid metabolism. APOA5 has strong potential to be used as a hypolipidemic drug target. Large amount of APOA5 protein and antibodies are needed in basic research, such as biological characteristics study of the APOA5, its relationship with other key components in TG metabolism, its role played in Lipid metabolism-related diseases. Due to its low concentration in plasma, separation and purification of APOA5 from the plasma is very difficult. Until now no report on simple and reliable method for purification has been published in China. In this study, we firstly got APOA5 recombinant protein using genetic engineering technology. The purified recombinant protein was used to immunize rabbits to get antiserum. It is important for further study of the APOA5 protein-interacting protein. And it lays the foundation for studing APOA5 function in liver. In order to study APOA5 function in liver, we used bacterial two-hybrid technology to find the APOA5 protein interactor. Pull-down, immunofluorescence and immunoprecipitation techniques were used to further confirm the interaction between APOA5 with its interactor in vitro and in vivo. All of these stdudies provided new clues on its physiological functions in vivo. Part I: Cloning, prokaryotic expression, purification and polyclonal antibody preparation of APOA5 First of all, we amplified APOA5 CDS sequence from the human hepatoma cell line SMMC-7721, and subcloned into Expression vector pThioHisD, and got the recombinants named pTH-APOA5. The plasmid was transformed to BL21 (DE3). E. coli BL21(DE3) cells bearing the pTH-APOA5 plasmid were cultured and APOA5 protein synthesis was induced by the addition of IPTG. Recombinant protein was expression in the form of inclusion. Inclusion bodies were dissolved in phosphate-buffered saline containing 8 M urea and 40 mM imidazole, then applied to a Ni2+ affinity column, and were eluted in a buffer containing 4 M urea and 200 mM imidazole. Fractions containing the APOA5 protein were pooled and dialyzed against buffer containing phosphate-buffered saline. Antiserum to recombinant human APOA5 was generated by immuning rabbit. Western Blot showed that this antiserum specific binding with APOA5. Part II Two-hybrid system screening protein interactions with the APOA5 The coding sequence of human APOA5 was amplified using synthetic oligonucleotide primers from pTH-APOA5 vector and was subcloned into the pBT plasmidc to yield pBT-APOA5 vector. DNA sequencing was performed to verify that no unwanted mutations occurred during the process of plasmid vector construction. We verified recombinant protein expression and tested self-activation by pBT-APOA5 prior to screening. Western Blot verified inducing a 68 kD band, consistent with the predicted molecular weight (APOA5 41 kD, lamda cI 27 kD). pBT-APOA5 can be used for screening human liver cDNA library because it can not self-activation. Totally 10 positive clones were isolated. The nucleotide sequence of the positive clones were determined and compared to NCBI nucleotide sequence databases. We got 7 protein which interact with APOA5, included BI1(Apoptosis regulator); ATP6, CYTB, ND2, COX-1(Mitochondrial protein) and ALB, TTR(Serum protein). Part III Confirming of interaction between APOA5 with BI1 pGEX-5X-3-BI1 vector was subcloned at first. Pull-down experiments were used to detect the interaction between APOA5 with BI1 in vitro. Later, pCDNA3.1-HA-BI1 and pCDNA3.1-APOA5 were subcloned. Through immunofluorescence co-localization study, we found APOA5 mainly distributed in the cytoplasm. APOA5 is co-localization with BI1 in HEK293 cells. Finally, we verified interaction between APOA5 with BI1 in vivo through immunoprecipitation.
Resumo:
非甾体类抗炎药(NSAIDs)在治疗炎症、疼痛及发烧等病症时发挥着重要的作用[1],但是,传统的NSAIDs对消化道及肾有毒副作用.1971年Vane[2]发现了NSAIDs作用于环氧合酶(COX),并且影响前列腺素(PG)的合成;1991年simmens等[3]和Herschman等[4]发现环氧合酶包含两种同工酶COX-1和COX-2,COX-1发挥生理性管家功能;COX-2为诱导型,在正常组织内活性极低,当受到某些细胞因子、促有丝分裂物质和内毒素刺激时,大量表达,相应引起致炎介质的增加,使炎症加重.