4 resultados para CNR

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We proposed a novel method to realize the readout of super-resolution pits by using a super-resolution reflective film to replace the reflective layer of the conventional ROM. At the same time, by using Sb as the super-resolution reflective layer and SiN as a dielectric layer, the super-resolution pits with diameters of 380 nm were read out by a setup whose laser wavelength is 632.8 nm and numerical aperture is 0.40. In addition, the influence of the Sb thin film thickness on the readout signal was investigated, the results showed that the optimum Sb thin film thickness is 28 to 30 nm, and the maximum CNR is 38 to 40 dB. (C) 2002 Society of Photo-Optical Instrumentation Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two novel read-only memory (ROM) disks, one with an AgOx mask layer and the other with an AgInSbTe mask layer, are proposed and studied. The AgOx and the AgInSbTe films sputtered on the premastered substrates with pit depths of 50 nm and pit lengths (space) of 380 nm are studied by atomic force microscopy. Disk readout measurement is carried out using a dynamic setup with a laser wavelength of 632.8 nm and an object lens numerical aperture (NA) of 0.40. Results show that the superresolution effect happens only at a suitable oxygen flow ratio for the AgOx ROM disk. The best superresolution readout effect is achieved at an oxygen flow ratio of 0.5 with the smoothest film surface. Compared with the AgOx ROM disk, the AgInSbTe ROM disk has a much smoother film surface and better superresolution effect. A carrier-to-noise ratio (CNR) of above 40 dB can be obtained at an appropriate readout power and readout velocity. The readout CNR of both the AgOx and AgInSbTe ROM disks have a nonlinear dependence on the readout power. The superresolution readout mechanisms for these ROM disks are analyzed and compared as well. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two novel read-only memory (ROM) disks, one with an AgOx mask layer and the other with an AgInSbTe mask layer, are proposed and studied. The AgOx and the AgInSbTe films sputtered on the premastered substrates with pit depths of 50 nm and pit lengths (space) of 380 nm are studied by atomic force microscopy. Disk readout measurement is carried out using a dynamic setup with a laser wavelength of 632.8 nm and an object lens numerical aperture (NA) of 0.40. Results show that the superresolution effect happens only at a suitable oxygen flow ratio for the AgOx ROM disk. The best superresolution readout effect is achieved at an oxygen flow ratio of 0.5 with the smoothest film surface. Compared with the AgOx ROM disk, the AgInSbTe ROM disk has a much smoother film surface and better superresolution effect. A carrier-to-noise ratio (CNR) of above 40 dB can be obtained at an appropriate readout power and readout velocity. The readout CNR of both the AgOx and AgInSbTe ROM disks have a nonlinear dependence on the readout power. The superresolution readout mechanisms for these ROM disks are analyzed and compared as well. (c) 2005 Society of Photo-Optical Instrumentation Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The conventional TbFeCo magneto-optical (MO) medium has a relatively smaller Kerr rotation angle in the blue region than in the red. With the recording wavelength gradually moving to the short wavelength, if TbFeCo is still used as recording medium, the conventional MO disk structure must be optimized to get a larger carrier to noise ratio (CNR). Sabi et al. have found that adding a metal layer attached to the TbFeCo film as thermal control layer is a useful way to get a high CNR. In this paper, we proved this through calculation, and carried out optimization of the new type of disk. Calculation results showed that the new structure is useful in preventing an excessive temperature increase, and has a better thermal response. (c) 2005 Elsevier B.V. All rights reserved.