103 resultados para CASCADE
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Particle-in-cell simulations are performed to study the acceleration of ions due to the interaction of a relativistic femtosecond laser pulse with a narrow thin target. The numerical results show that ions can be accelerated in a cascade by two electrostatic fields if the width of the target is smaller than the laser beam waist. The first field is formed in front of the target by the central part of the laser beam, which pushes the electron layer inward. The major part of the abaxial laser energy propagates along the edges to the rear side of the target and pulls out some hot electrons from the edges of the target, which form another electrostatic field at the rear side of the target. The ions from the front surface are accelerated stepwise by these two electrostatic fields to high energies at the rear side of the target. The simulations show that the largest ion energy gain for a narrow target is about four times higher than in the case of a wide target. (c) 2006 American Institute of Physics.
Resumo:
A pulse-compression scheme based on cascade of filamentation and hollow fiber has been demonstrated, Pulses with duration of sub-5 fs and energy of 0.2 mJ near 800 nm have been generated by compressing the similar to 40 fs pulses from a commercial laser system. This method is promising to generate near monocycle high energy pulses. [GRAPHICS] Measured autocorrelation curve of the final compressed pulses with duration of sub-5 fs (black solid) and the simulated autocorrelation curve of 4.6 fs pulse near 800 rim (red dash) (C) 2008 by Astro Ltd. Published exclusively by WILEY-VCH Verlag GmbH & Co. KGaA
Resumo:
Two-cycle optical pulses with duration of 5 fs and energy of 0.7 mJ have been generated at 1 kHz by compressing the 38 fs laser pulses from a carrier-envelope phase (CEP) controlled Ti:sapphire laser system through a cascade filamentation compression technique. A simple and effective method is developed to suppress multiple filament formation and stabilize a single filament by inserting a soft aperture with an appropriate diameter into the driving laser beam prior to focusing, resulting in an excellent compressed beam quality. The good beam quality and potentially higher peak power make this ultrashort laser pulse source a significant tool for high-field physics applications. (C) 2007 Optical Society of America.
Resumo:
We demonstrate theoretically and experimentally compensation for positive Kerr phase shifts with negative phases generated by cascade quadratic processes. Experiments show correction of small-scale self-focusing and whole-beam self-focusing in the spatial domain and self-phase modulation in the temporal domain. (C) 2001 Optical Society of America.
Resumo:
An enclosure experiment was carried out to test trophic cascade effect of filter-feeding fish on the ecosystem: growth of crustacean zooplankton, and possible mechanism of changes of crustacean community structure. Four fish biomass levels were set as follows: 0, 116, 176 and 316 g m(-2), and lake water ( containing ca. 190 g m(-2) of filter-feeding fishes) was comparatively monitored. Nutrient levels were high in all treatments during the experiment. Lowest algal biomass were measured in fishless treatment. Algal biomass decreased during days 21-56 as a function of fish biomass in treatments of low (LF), medium (MF) and high (HF) fish biomass. Crustaceans biomass decreased with increasing fish biomass. Small-bodied cladocerans, Moina micrura, Diaphanosoma brachyurum and Scapholeberis kingii survived when fish biomass was high whilst, large-bodied cladocerans Daphnia spp. and the cyclopoids Theromcyclops taihokuensis, T. brevifuratus, Mescyclops notius and Cyclops vicinus were abundant only in NF enclosures. Evasive calanoid Sinodiaptomus sarsi was significantly enhanced in LF, but decreased significantly with further increase of fish biomass. Demographic data indicated that M. micrura was well developed in all treatments. Our study indicates that algal biomass might be controlled by silver carp biomass in eutrophic environment. Changes of crustacean community are probably affected by the age of the first generation of species. Species with short generation time were dominant and species with long generation time survived less with high fish biomass. Evasive calanoids hardly developed in treatments with high fish biomass because of the ( bottle neck) effect of nauplii. Species abundance were positively related to fish predation avoidance. Other than direct predation, zooplankton might also be suppressed by filter-feeding fish via competition.
Resumo:
In this letter, we propose an n-type vertical transition bound-to-continuum Ge-SiGe quantum cascade structure utilizing electronic quantum wells in the L and F valleys of the Ge layers. The optical transition levels are located in the quantum wells in the L valley. Under a bias of 80 kV/cm, the carriers in the lower level are extracted by miniband transport and L - Gamma tunneling into the subband in the Gamma well of the next period. And then the electrons are injected into the upper level by ultrafast intervalley scattering, which not only effectively increases the tunneling rate and suppresses the thermal backfilling of electrons, but also enhances the injection efficiency of the upper level. The performance of the laser is discussed.
Resumo:
High-power operation of uncoated 22-mu m-wide quantum cascade lasers (QCLs) emitting at lambda approximate to 4.8 mu m is reported. The emitting region of the QCL structure consists of a 30-period strain-compensated In0.68Ga0.32As/In0.37Al0.63As superlattice. For a 4-mm-long laser in pulsed mode, a peak output power is achieved in excess of 2240mW per facet at 81K with a threshold current density of 0.64kA/cm(2). The effects of varying the cavity lengths from 1 to 4mm on the performances of the QCLs are analysed in detail and the low waveguide loss of only about 1.4 cm(-1) is extracted.
Resumo:
The choice of the etching depth for semiconductor microcavities is a compromise between a high Q factor and a difficult technique in a practical fabricating process. In this paper, the influences of the etching depth on mode Q factors for mid-infrared quantum cascade microcylinder and microsquare lasers around 4.8 and 7.8 mu m are simulated by three-dimensional (3D) finite-difference time-domain (FDTD) techniques. For the microcylinder and the microsquare resonators, the mode Q factors of the whispering-gallery modes (WGMs) increase exponentially and linearly with the increase in the etching depth, respectively Furthermore, the mode Q factors of some higher order transverse WGMs may be larger than that of the fundamental transverse WGM in 3D microsquares. Based on the field distribution of the vertical multilayer slab waveguide and the mode Q factors versus the etching depth, the necessary etching depth is chosen at the position where the field amplitude is 1% of the peak value of the slab waveguide. In addition, the influences of sidewall roughness on the mode Q factors are simulated for microsquare resonators by 2D FDTD simulation. (C) 2009 Optical Society of America
Resumo:
In this paper, a mini-staged multi-stacked quantum cascade laser structure with a designed wavelength of 4.7 mu m is presented. By introducing five 0.5 mu m thick high thermal conductivity InP interbuffer layers, the 60-stages active region core of the quantum cascade laser is divided into six equal parts. Based on simulation, this kind of quantum cascade laser with a 10 mu m ridge width gives nearly circular two-dimensional far-field distribution (FWHM = 32.8 degrees x 29 degrees) and good beam quality parameters M-2 = 1.32 x 1.31 in the fast axis (growth direction) and the slow axis (lateral direction). Due to the enhancement of lateral heat extraction through the interbuffer layers, compared to the conventional structure, a decrease of about 5-6% for the maximum temperature in the active region core of the mini-staged multi-stacked quantum cascade laser with indium-surrounded and gold-electroplated packaging profiles is obtained at all possible dissipated electrical power levels.
Resumo:
Electrically pumped, edge-emitting, singlemode operation of a two-dimensional photonic crystal distributed feedback (PCDFB) quantum cascade laser emitting at similar to 7.8 mu m is demonstrated. The two-beam holographic technique combined with wet-etching process is successfully used to de. ne a square-lattice PCDFB structure on the top grating layer of the laser. This simple PC fabrication method may open exciting opportunities for the wide application of PCDFB lasers.
Resumo:
High material quality is the basis of quantum cascade lasers (QCLs). Here we report the solid source molecular beam epitaxy (MBE) growth details of realizing high quality of InGaAs/InAlAs QCL structures. Accurate control of material compositions, layer thickness, doping profile, and interface smoothness can be realized by optimizing the growth conditions. Double crystal x-ray diffraction discloses that our grown QCL structures possess excellent periodicity and sharp interfaces. High quality laser wafers are grown in a single epitaxial run. Room temperature continuous-wave (cw) operation of QCLs is demonstrated.
Resumo:
We demonstrate the fabrication and characterization of photonic-crystal distributed-feedback quantum cascade laser emitting at 4.7 mu m. The tilted rectangular-lattice PCDFB structure was defined using a multi-exposure of two-beam holographic lithography. The devices exhibit the near-diffraction-limited beam emission with the full width at half maximum of the far-field divergence angles about 4.5 degrees and 2.5 degrees for stripe widths of 55 mu m and 95 mu m, respectively. Single-mode emission with a side mode suppression ratio of approximate to 20 dB is achieved in the temperature range (80-210 K). The single-facet output power is above 1 W for a 95 mu m x 2.5 mm laser bar at 85 K in pulsed operation. (C) 2009 Optical Society of America
Resumo:
Quasi-continuous-wave operation of AlGaAs/GaAs-based quantum cascade lasers (lambda similar to 9 mu m) up to 165 K is reported. The strong temperature dependence of the threshold current density and its higher value in high duty cycle is investigated in detail. The self-heating effect in the active region is explored by changing the operating duty cycles. The degradation of lasing performance with temperature is explained. (c) 2005 Elsevier B.V. All rights reserved.