98 resultados para Bidirectional reflection distribution function

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

By introducing the scattering probability of a subsurface defect (SSD) and statistical distribution functions of SSD radius, refractive index, and position, we derive an extended bidirectional reflectance distribution function (BRDF) from the Jones scattering matrix. This function is applicable to the calculation for comparison with measurement of polarized light-scattering resulting from a SSD. A numerical calculation of the extended BRDF for the case of p-polarized incident light was performed by means of the Monte Carlo method. Our numerical results indicate that the extended BRDF strongly depends on the light incidence angle, the light scattering angle, and the out-of-plane azimuth angle. We observe a 180 degrees symmetry with respect to the azimuth angle. We further investigate the influence of the SSD density, the substrate refractive index, and the statistical distributions of the SSD radius and refractive index on the extended BRDF. For transparent substrates, we also find the dependence of the extended BRDF on the SSD positions. (c) 2006 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

针对非合作小目标激光测距系统,目标表面的反射特征对激光回波信号有很大的影响。建立测量表面双向反射分布函数(BRDF)的装置,对常用的两种热控材料——白漆涂层和F36多包层,测量了其在1064 nm波长下的双向反射分布函数。得出了白漆涂层镜面反射很小,散射角较大,利于各方向接收回波信号;而F36多包层镜面反射很强,散射角-2°~2°,不利于探测。通过由表面BRDF与由朗伯散射计算得到的最小接收功率的比较,得出了入射角大于45°入射白漆涂层时,回波信号较小;大于2°入射F36多包层时,没有回波信号。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based upon the spatially inhomogeneous Boltzmann equation in two-term approximation coupled with electromagnetic and fluid model analysis for the recently developed inductively coupled plasma sources, a self-consistent electron kinetic model is developed. The electron distribution function, spatial distributions of the electron density and ionization rate are calculated and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the use of a Wigner distribution function approach for exploring the problem of extending the depth of field in a hybrid imaging system. The Wigner distribution function, in connection with the phase-space curve that formulates a joint phase-space description of an optical field, is employed as a tool to display and characterize the evolving behavior of the amplitude point spread function as a wave propagating along the optical axis. It provides a comprehensive exhibition of the characteristics for the hybrid imaging system in extending the depth of field from both wave optics and geometrical optics. We use it to analyze several well-known optical designs in extending the depth of field from a new viewpoint. The relationships between this approach and the earlier ambiguity function approach are also briefly investigated. (c) 2006 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

On the basis of the space-time Wigner distribution function (STWDF), we use the matrix formalism to study the propagation laws for the intensity moments of quasi-monochromatic and polychromatic pulsed paraxial beams. The advantages of this approach are reviewed. Also, a least-squares fitting method for interpreting the physical meaning of the effective curvature matrix is described by means of the STWDF. Then the concept is extended to the higher-order situation, and what me believe is a novel technique for characterizing the beam phase is presented. (C) 1999 Optical Society of America [S0740-3232(99)001009-1].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The usual application of the Lei-Ting balance equation method for treating electron transport problems makes use of a Fermi distribution function for the electron motion relative to the center of mass. It is pointed out that this presumes the existence of a moving frame of reference that is dynamically equivalent to the rest frame of reference, and this is only true for electrons with a constant effective mass. The method is thus inapplicable to problems where electrons governed by a general energy-band dispersion E(k) are important (such as in miniband conduction). It is demonstrated that this difficulty can be overcome by introducing a distribution function for a drifting electron gas by maximizing the entropy subject to a prescribed average drift velocity. The distribution function reduces directly to the usual Fermi distribution for electron motion relative to the center of mass in the special case of E(k)=($) over bar h(2)\k\(2)/2m*. This maximum entropy treatment of a drifting electron gas provides a physically more direct as well as a more general basis for the application of the balance equation method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The results of experiments in open channels and closed pipelines show two kinds of patterns for the vertical distribution of particle concentration (i.e., pattern I and pattern II). The former shows a pattern of maximum concentration at some location above the bottom and the downward decay of the concentration below the location. The latter always shows an increase of the particle concentration downward over the whole vertical, with the maximum value at the bottom. Many investigations were made on the pattern II, but few were made on pattern I. In this paper, a particle velocity distribution function is first obtained in the equilibrium state or in dilute steady state for the particle in two-phase flows, then a theoretical model for the particle concentration distribution is derived from the kinetic theory. More attention is paid to the predictions of the concentration distribution of pattern I and comparisons of the present model are made with the data measured by means of laser doppler anemometry (LDA). Very good agreements are obtained between the measured and calculated results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic properties of proteins have crucial roles in understanding protein function and molecular mechanism within cells. In this paper, we combined total internal reflection fluorescence microscopy with oblique illumination fluorescence microscopy to observe directly the movement and localization of membrane-anchored green fluorescence proteins in living cells. Total internal reflect illumination allowed the observation of proteins in the cell membrane of living cells since the penetrate depth could be adjusted to about 80 nm, and oblique illumination allowed the observation of proteins both in the cytoplasm and apical membrane, which made this combination a promising tool to investigate the dynamics of proteins through the whole cell. Not only individual protein molecule tracks have been analyzed quantitatively but also cumulative probability distribution function analysis of ensemble trajectories has been done to reveal the mobility of proteins. Finally, single particle tracking has acted as a compensation for single molecule tracking. All the results exhibited green fluorescence protein dynamics within cytoplasm, on the membrane and from cytoplasm to plasma membrane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Particle velocity distribution in a blowing sand cloud is a reflection of saltation movement of many particles. Numerical analysis is performed for particle velocity distribution with a discrete particle model. The probability distributions of resultant particle velocity in the impact-entrainment process, particle horizontal and vertical velocities at different heights and the vertical velocity of ascending particles are analyzed. The probability distributions of resultant impact and lift-off velocities of saltating particles can be expressed by a log-normal function, and that of impact angle comply with an exponential function. The probability distribution of particle horizontal and vertical velocities at different heights shows a typical single-peak pattern. In the lower part of saltation layer, the particle horizontal velocity distribution is positively skewed. Further analysis shows that the probability density function of the vertical velocity of ascending particles is similar to the right-hand part of a normal distribution function, and a general equation is acquired for the probability density function of non-dimensional vertical velocity of ascending particles which is independent of diameter of saltating particles, wind strength and height. These distributions in the present numerical analysis are consistent with reported experimental results. The present investigation is important for understanding the saltation state in wind-blown sand movement. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Because of the intrinsic difficulty in determining distributions for wave periods, previous studies on wave period distribution models have not taken nonlinearity into account and have not performed well in terms of describing and statistically analyzing the probability density distribution of ocean waves. In this study, a statistical model of random waves is developed using Stokes wave theory of water wave dynamics. In addition, a new nonlinear probability distribution function for the wave period is presented with the parameters of spectral density width and nonlinear wave steepness, which is more reasonable as a physical mechanism. The magnitude of wave steepness determines the intensity of the nonlinear effect, while the spectral width only changes the energy distribution. The wave steepness is found to be an important parameter in terms of not only dynamics but also statistics. The value of wave steepness reflects the degree that the wave period distribution skews from the Cauchy distribution, and it also describes the variation in the distribution function, which resembles that of the wave surface elevation distribution and wave height distribution. We found that the distribution curves skew leftward and upward as the wave steepness increases. The wave period observations for the SZFII-1 buoy, made off the coast of Weihai (37A degrees 27.6' N, 122A degrees 15.1' E), China, are used to verify the new distribution. The coefficient of the correlation between the new distribution and the buoy data at different spectral widths (nu=0.3-0.5) is within the range of 0.968 6 to 0.991 7. In addition, the Longuet-Higgins (1975) and Sun (1988) distributions and the new distribution presented in this work are compared. The validations and comparisons indicate that the new nonlinear probability density distribution fits the buoy measurements better than the Longuet-Higgins and Sun distributions do. We believe that adoption of the new wave period distribution would improve traditional statistical wave theory.