18 resultados para Bessel
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
An analytical solution for the three-dimensional scattering and diffraction of plane P-waves by a hemispherical alluvial valley with saturated soil deposits is developed by employing Fourier-Bessel series expansion technique. Unlike previous studies, in which the saturated soil deposits were simulated with the single-phase elastic theory, in this paper, they are simulated with Biot's dynamic theory for saturated porous media, and the half space is assumed as a single-phase elastic medium. The effects of the dimensionless frequency, the incidence angle of P-wave and the porosity of soil deposits on the surface displacement magnifications of the hemispherical alluvial valley are investigated. Numerical results show that the existence of a saturated hemispherical alluvial valley has much influence on the surface displacement magnifications. It is more reasonable to simulate soil deposits with Biot's dynamic theory when evaluating the displacement responses of a hemispherical alluvial valley with an incidence of P-waves.
Resumo:
An analytical solution to the three-dimensional scattering and diffraction of plane SV-waves by a saturated hemispherical alluvial valley in elastic half-space is obtained by using Fourier-Bessel series expansion technique. The hemispherical alluvial valley with saturated soil deposits is simulated with Biot's dynamic theory for saturated porous media. The following conclusions based on numerical results can be drawn: (1) there are a significant differences in the seismic response simulation between the previous single-phase models and the present two-phase model; (2) the normalized displacements on the free surface of the alluvial valley depend mainly on the incident wave angles, the dimensionless frequency of the incident SV waves and the porosity of sediments; (3) with the increase of the incident angle, the displacement distributions become more complicated; and the displacements on the free surface of the alluvial valley increase as the porosity of sediments increases.
Resumo:
利用特殊函数的Graf加法公式和波函数展开方法得出了圆夹杂内作用集中力的格林函数。根据Bessel函数的渐近性质,对所得格林函数的奇异部分和有界部分进行了分离。利用所得的格林函数和互易定理得出了圆夹杂内裂纹在SH波作用下的散射场。根据裂纹的散射场建立了圆夹杂内裂纹的超奇异积分方程。对超奇异积分方程的数值求解,可得裂纹端点的动应力强度因子。
Resumo:
非微扰量子电动力学的发展使我们可以利用精确的波函数和非微扰的散射理论来研究多光子电离问题.文章作者及其合作者发展了光电子角分布的处理方法,利用复合相位Bessel函数来表征光电子的跃迁几率幅,将光电子的角分布与复合相位Bessel函数直接联系起来.研究发现,复合相位Bessel函数的性质决定了光电子角分布的主要特点及其随激光强度、频率以及光电子能量的演化.该理论不但证实了实验上已经观测到的各种光电子角分布,而且还预言了实验上尚未观测到的光电子角分布,确立了光电子角分布的标度定律.
Resumo:
Using a nonperturbative quantum scattering theory, the photoelectron angular distributions (PADs) from the multiphoton detachment of H- ions in strong, linearly polarized infrared laser fields are obtained to interpret recent experimental observations. In our theoretical treatment, the PADs in n-photon detachment are determined by the nth-order generalized phased Bessel (GPB) functions X-n(Z(f),eta). The advantage of using the GPB scenario to calculate PADs is its simplicity: a single special function (GPB) without any mixing coefficient can express PADs observed by recent experiments. Thus, the GPB scenario can be called a parameterless scenario.
Resumo:
We apply a scattering theory of nonperturbative quantum electrodynamics to study the photoelectron angular distributions (PADs) of a hydrogen atom irradiated by linearly polarized laser light. The calculated PADs show main lobes and jetlike structure. Previous experimental studies reveal that in a set of above-threshold-ionization peaks when the absorbed-photon number increases by one, the jet number also increases by one. Our study confirms this experimental observation. Our calculations further predict that in some cases three more jets may appear with just one-more-photon absorption. With consideration of laser-frequency change, one less jet may also appear with one-more-photon absorption. The jetlike structure of PADs is due to the maxima of generalized phased Bessel functions, not an indication of the quantum number of photoelectron angular momentum states.
Resumo:
The recently observed anomaly in photoelectron angular distributions (PADs), the disappearance of the main lobes of PADs which should be usually in the direction of laser polarization, is reinterpreted as a minimum of generalized Bessel functions in the laser-polarization direction with the theory of nonperturbative quantum electrodynamics. The reinterpretation has no artificial fitting parameters and explains more features of the experimentally observed PADs, in contrast to the existing interpretation in which the anomaly is interpreted as a quantum interference of angular momentum partial waves. Some hierarchy anomalies are predicted for further experimental observations.
Resumo:
现有的半导体激光干涉仪存在测量精度与测量范围的矛盾。本文提出一种新的实时位移测量半导体激光干涉仪,并分析了干涉仪的测量原理。首先提出一种新的解相算法,它通过两路实时相位探测电路从干涉信号中得到待测量相位,消除了光强波动、初始光程差、电路放大倍数、调制深度、Bessel函数等参数对测量精度的影响,提高了测量精度。其次,提出一种扩大测量范围的技术,并用解包裹电路得到真实相位和待测量的位移, 将测量范围从半个波长提高到几个波长。在实验中,测得喇叭的峰峰值为2361.7nm,重复测量精度为2.56nm,测量时间为
Resumo:
由第一类零阶贝塞尔函数的级数展开推导出波结构函数在任意湍流条件下的近似表达式。由广义惠更斯菲涅耳原理、随高度变化的Hufnagel-Valley湍流廓线模型以及波结构函数在任意湍流条件下的近似表达式,导出了斜程传输时准单色高斯谢尔光束互相干函数的解析式。然后,利用表征光束时间相干性的纵向相干长度(可由互相干函数导出),研究了斜程传输时大气湍流对准单色高斯谢尔光束时间相干性的影响。研究结果表明,准单色高斯谢尔光束的时间相干性在整个斜程传输过程中保持不变。最后,对该结果在物理上给予了定性解释。
Resumo:
针对现有光弹调制器标定方法的不足,提出了一种精确标定光弹调制器的新方法。首先利用起偏器、波片、光弹调制器和检偏器构成标定光路.通过寻找探测信号基频分量的极大值进行粗略标定,使光弹调制器的峰值延迟量处在1.841rad附近。然后撤走波片形成光弹凋制器的精确标定光路.在检偏器旋转90°前后获得探测信号的直流分量和二次谐波分量。最后利用这两种探测信号的直流分量和二次谐波分量精确地计算出光弹调制器的峰值延迟量。实验验让了此光掸调制器标定方法,实验结果表明其标定误差仅为0.7%。在此光掸凋制器标定方法中.光弹调制器
Resumo:
Recurring to the characteristic of Bessel function, we give the analytic expression or the Fresnel diffraction by a circular aperture, thus the diffractions on the propagation axis and along the boundary of the geometrical shadow are discussed conveniently. Since it is difficult to embody intuitively the physical meaning from this series expression of the Fresnel diffraction, after weighing the diffractions on the axis and along the boundary of the geometrical shadow, we propose a simple approximate expression of the circular diffraction, which is equivalent to the rigorous solution in the further propagation distance. It is important for the measurement of the parameter or the beam, such as the quantitative analysis of the relationship of the wave error and the divergence of the beam, In this paper, the relationship of the fluctuation of the transverse diffraction profile and the position of the axial point is discussed too. (c) 2005 Elsevier GrnbH. All rights reserved.
Resumo:
Based on the generalized Huygens-Fresnel diffraction integral theory and the stationary-phase method, we analyze the influence on diffraction-free beam patterns of an elliptical manufacture error in an axicon. The numerical simulation is compared with the beam patterns photographed by using a CCD camera. Theoretical simulation and experimental results indicate that the intensity of the central spot decreases with increasing elliptical manufacture defect and propagation distance. Meanwhile, the bright rings around the central spot are gradually split into four or more symmetrical bright spots. The experimental results fit the theoretical simulation very well. (C) 2008 Society of Photo-Optical Instrumentation Engineers.
Resumo:
A new calibration method for a photoelastic modulator is proposed. The calibration includes a coarse calibration and a fine calibration. In the coarse calibration, the peak retardation of the photoelastic modulator is set near 1.841 rad. In the fine calibration, the value of the zeroth Bessel function is obtained. The zeroth Bessel function is approximated as a linear equation to directly calculate the peak retardation. In experiments, the usefulness of the calibration method is verified and the calibration error is less than 0.014 rad. The calibration is immune to the intensity fluctuation of the light source and independent of the circuit parameters. The method specially suits the calibration of a photoelastic modulator with a peak retardation of less than a half-wavelength. (c) 2007 Optical Society of America.
Resumo:
A detailed study on analyzing the crosstalk in a wavelength division multiplexed fiber laser sensor array system based on a digital phase generated carrier interferometric interrogation scheme is reported. The crosstalk effects induced by the limited optical channel isolation of a dense wavelength division demultiplexer (DWDM) are presented, and the necessary channel isolation to keep the crosstalk negligible to the output signal was calculated via Bessel function expansion and demonstrated by a two serial fiber laser sensors system. Finally, a three-element fiber laser sensor array system with a 50-dB channel-isolation DWDM was built up. Experimental results demonstrated that there was no measurable crosstalk between the output channels.