70 resultados para Beam angle selection
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The off-axis sonar beam patterns of eight free-ranging finless porpoises were measured using attached data logger systems. The transmitted sound pressure level at each beam angle was calculated from the animal's body angle, the water surface echo level, and the swimming depth. The beam pattern of the off-axis signals between 45 and 115 (where 0 corresponds to the on-axis direction) was nearly constant. The sound pressure level of the off-axis signals reached 162 dB re 1 mPa peak-to-peak. The surface echo level received at the animal was over 140 dB, much higher than the auditory threshold level of small odontocetes. Finless porpoises are estimated to be able to receive the surface echoes of off-axis signals even at 50-m depth. Shallow water systems (less than 50-m depth) are the dominant habitat of both oceanic and freshwater populations of this species. Surface echoes may provide porpoises not only with diving depth information but also with information about surface direction and location of obstacles (including prey items) outside the on-axis sector of the sonar beam. 2005 Acoustical Society of America.
Resumo:
The novel material of photonic crystal makes it possible to control a photon, and the photonic integration will have breakthrough progress due to the application of photonic crystal. It is based on the photonic crystal device that the photonic crystal integration could be realized. Therefore, we should first investigate photonic crystal devices based on the active and the passive semiconductor materials, which may have great potential application in photonic integration. The most practical and important method to fabricate two-dimensional photonic crystal is the micro-manufacture method. In this paper, we summarize and evaluate the fabrication methods of two-dimensional photonic crystal in near-infrared region, including electron beam lithography, selection of mask, dry etching, and some works of ours. This will be beneficial to the study of the photonic crystal in China.
Resumo:
We describe the rigorous results of a wide-angle laser beam scanner, obtained with the help of the vector refraction theory. Using the rigorous results, the distortion of the beam shape is discussed. The distortion to the beam varies with the different relative angles of double prisms. The scanner expands the beam in some directions while it contracts the beam in other directions. According to the conservation of energy, the distribution of the laser intensity is changed as well. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In this paper, we describe a wide-angle laser beam scanner and the rigorous result of the wide-angle laser beam scanner was obtained with the help of the vector refraction theory. Using the rigorous results, the distortion of the beam shape was discussed. The distortion of the beam shape is varying with the different relative angles of the double prisms. According to the conservation of the energy, the distribution of the laser intensity is changed too. (c) 2005 Elsevier GmbH. All rights reserved.
Resumo:
We describe the rigorous results of a wide-angle laser beam scanner, obtained with the help of the vector refraction theory. Using the rigorous results, the distortion of the beam shape is discussed. The distortion to the beam varies with the different relative angles of double prisms. The scanner expands the beam in some directions while it contracts the beam in other directions. According to the conservation of energy, the distribution of the laser intensity is changed as well. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Beam splitting of low-contrast rectangular gratings under second Bragg angle incidence is studied. The grating period is between lambda and 2 lambda. The diffraction behaviors of the three transmitted propagating orders are illustrated by analyzing the first three propagating grating modes. From a simplified modal approach, the design conditions of gratings as a high-efficiency element with most of its energy concentrated in the -2nd transmitted order (similar to 90%) and of gratings as a 1 x 2 beam splitter with a total efficiency over 90% are derived. The grating parameters for achieving exactly the splitting pattern by use of rigorous coupled-wave analysis verified the design method. A 1 x 3 beam splitter is also demonstrated. Moreover, the polarization-dependent diffraction behaviors are investigated, which suggest the possibility of designing polarization-selective elements under such a configuration. The proposed concept of using the second Bragg angle should be helpful for developing new grating-based devices. (C) 2008 Optical Society of America.
Resumo:
A new finite difference wide-angle beam propagation method is developed by introducing the least-squares expansion approximant in the propagator expansion. In this new method it is not necessary to select the reference index point because of the whole region approaching the lease-square expansion. This method avoids the problems induced by error selection of the reference index in the old methods based on Taylor or Pade expansion. Several typical structures are simulated by the new method and the results prove the validity of it.
Resumo:
Many-beam dynamical simulations and observations have been made for large-angle convergent-beam electron diffraction (LACBED) imaging of crystal defects, such as stacking faults and dislocations. The simulations are based on a general matrix formulation of dynamical electron diffraction theory by Peng and Whelan, and the results are compared with experimental LACBED images of stacking faults and dislocations of Si angle crystals. Excellent agreement is achieved.
Resumo:
GaAs films made by molecular beam epitaxy with thicknesses ranging from 0.9 to 1.25-mu-m on Si have been implanted with Si ions at 1.2 MeV to dose of 1 x 10(15)/cm2. A rapid infrared thermal annealing and white light annealing were then used for recrystallization. Crystalline quality was analysed by using backscattering channeling technique with Li ion beam of 4.2 MeV. The experimental results show that energy selection is important for obtaining better and uniform recrystallized GaAs epilayers.
Resumo:
The beam lattice-type models, such as the Euler-Bernoulli (or Timoshenko) beam lattice and the generalized beam (GB) lattice, have been proved very effective in simulating failure processes in concrete and rock due to its simplicity and easy implementation. However, these existing lattice models only take into account tensile failures, so it may be not applicable to simulation of failure behaviors under compressive states. The main aim in this paper is to incorporate Mohr-Coulomb failure criterion, which is widely used in many kinds of materials, into the GB lattice procedure. The improved GB lattice procedure has the capability of modeling both element failures and contact/separation of cracked elements. The numerical examples show its effectiveness in simulating compressive failures. Furthermore, the influences of lateral confinement, friction angle, stiffness of loading platen, inclusion of aggregates on failure processes are respectively analyzed in detail.
Resumo:
We investigate the characteristics of Gaussian beams reflected and transmitted from a uniaxial crystal slab with an arbitrary orientation of its optical axis. The formulas of the total electric and magnetic fields inside and outside the slab are derived by use of Maxwell's equations and by matching the boundary conditions at the interfaces. Numerical simulations are presented and the field values as well as the power densities are computed. Negative refractions are demonstrated when the beam is transmitted through a uniaxial crystal slab. Beam splitting of the reflected beam is observed and is explained by the resonant transmission for plane waves. Dependences of the lateral shift on the incident angle and beam width are discussed. Negative and positive lateral shifts are observed due to the spatial anisotropic properties.
Resumo:
We report the experimental generation of a high-quality partially coherent dark hollow beam (DHB) by coupling a partially coherent beam into a multimode fiber (MMF) with a suitable incidence angle. The interference experiment of the generated partially coherent DHB passing through double slits is demonstrated. It is found that the coupling efficiency of the MMF, the quality, and the coherence of the generated partially coherent DHB are closely controlled by the coherence of the input beam. (c) 2008 Optical Society of America.
Resumo:
Accurate, analytical series expressions for the far-field diffraction of it Gaussian beam normally incident on a circular and central obscured aperture are derived with the help of the integration of parts method. With this expression, the far-field intensity distribution pattern can be obtained and the divergence angle is deduced too. Using the first five items of the series, the accuracy can satisfy most laser application fields. Compared with the conventional numerical integral method, the series representation is very convenient for understanding the physical meanings. (C) 2007 Elsevier GmbH. All rights reserved.