113 resultados para BENZYL PHENYL SULFIDE
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Ten single benzyl phenyl ethers were synthesized and evaluated as human immunodeficiency virus-1 (HIV-1) inhibitors in vitro for the first time. Among these compounds, especially 4-nitrobenzyl phenyl ether (3h) exhibited the highest anti-HIV-1 activity wi
Resumo:
Self-assembled monolayers (SAMs) of 4,4'-thiobisbenzenethiol (TBBT) can be formed on Au surface spontaneously. The structural characteristics and adsorption behavior of TBBT SAMs on Au have been investigated by surface enhanced Raman scattering (SERS), electrochemical cyclic voltammetry (CV), ac impedance spectroscopy (EIS), and atomic force microscopy (AFM). It is demonstrated that TBBT adsorbed on Au by losing a H atom, forming one Au-S bond, and the other mercapto group is free at the surface of the monolayer owing to the presence of the nu(S-H) at 2513 cm(-1) and the delta(C-S-H) at 910 cm(-1) in SERS. The enhancement of the vibration of C-S (1064 cm(-1)), the aromatic C-H vibration (3044 cm(-1)), and the absence of the vibration of S-S illustrate TBBT adsorbed on Au forming a monolayer with one benzene ring tilted with respect to the Au surface. The interpretation of the observed frequencies is aided by ab initio molecular orbital (MO) calculations at the HF/6-31G* level of theory. Electrochemical CV and EIS indicate TBBT monolayers can passivate the Au effectively for its low ratio of pinhole defects (theta = 99.6%). AFM studies give details about the surface morphology. The applications of TBBT SAMs have been extensively investigated by exposure of Cu2+ ion to TBBT SAMs on Au and covalent adsorption of metal nanoparticles.
Resumo:
We functionalize the focal group of hyperbranched poly(phenylene sulfide) (HPPS) with benzyl, phenyl, and naphthyl group, respectively. DSC analysis shows that T-g of HPPS is increased from 55 to 93 degrees C by functionalization of the focal group with a conjugated naphthyl group. The fluorescence properties of the three core-functionalized HPPS' are studied under the comparison with the original HPPS.
Resumo:
Poly(phenylenesulfidephenylenamine)(PPSA) an alternating copolymer and the hybrid structure of poly(phenylene sulfide)(PPS) and polyaniline(PAn), was synthesized by self-polycondensation of methyl-(4-anilino-phenyl) sulfide with antimony pentachloride and by the acid-induced self-polycondensation of methyl-(4-anilino-phenyl) sulfoxide.
Resumo:
The title compound, C19H18N2O3S, shows favourable activity against HIV-1. The phenyl ring is twisted with respect to the pyrimidine ring by 61.56 (9)degrees. Intermolecular N-H center dot center dot center dot O and C-H center dot center dot center dot O
Resumo:
A new vinyl acyl azide monomer, 4-(azidocarbonyl) phenyl methacrylate, has been synthesized and characterized by NMR and FTIR spectroscopy. The thermal stability of the new monomer has been investigated with FTIR and thermal gravimetry/differential thermal analysis (TG/DTA), and the monomer has been demonstrated to be stable below 50 degrees C in the solid state. The copolymerizations of the new monomer with methyl acrylate have been carried out at room temperature under Co-60 gamma-ray irradiation in the presence of benzyl 1-H-imidazole-1-carbodithioate. The results show that the polymerizations bear all the characteristics of controlled/living free-radical polymerizations, such as the molecular weight increasing linearly with the monomer conversion, the molecular weight distribution being narrow (< 1.20), and a linear relationship existing between In([M](0)/[M]) and the polymerization time. The data from H-1 NMR and FTIR confirm that no change in the acyl azide groups has occurred in the polymerization process and that acyl azide copolymers have been obtained. The thermal stability of the polymers has also been investigated with TG/DTA and FTIR.
Resumo:
Three new types of aryl diketo acid (ADK) isosteres were designed by conversion of the biologically labile 1,3-diketo unit into heteroaromatic motif such as isoxazole, isothiazole, or 1H-pyrazole to improve the physicochemical property of ADK-based HIV-1
Resumo:
The effects of organic-rich sediment and sulfide exposure on Hydrilla verticillata were investigated. The organic richness of sediment was simulated by adding sucrose into sediments, and sulfide exposure was conducted by adding sodium sulfide to plant roots. The length, biomass and density of shoot reduced in the sucrose-amended sediments, and the largest reduction occurred in the highest 1.0% addition treatment by 84.2%, 56.7% and 92.4%, respectively. However, the 0.1% addition treatment stimulated the growth of root. The effects of below-ground sulfide exposure on the physiological activities of H. verticillata were determined by adding sulfide to the below-ground tissue. Significantly inhibitory effects of sulfide were observed on plant photosynthesis, root carbohydrate and nitrogen synthetic reserves. The net photosynthetic rates, soluble carbohydrate and soluble protein contents in root were reduced by 104%, 71.8% and 49.8%, respectively, in the 0.6 mM sulfide treatment.
Resumo:
The acid-volatile sulfide (AVS), simultaneously extracted metals (SEM), total metals, and chemical partitioning in the sediment cores of the Pearl River Estuary (PRE) were studied. The concentrations of total metals, AVS, and SEM in the sediment cores were generally low in the river outlet area, increased along the seaward direction, and decreased again at the seaward boundary of the estuary. The amounts of AVS were generally greater in deeper sediments than in surface sediments. SEM/AVS was > 1 in the surface sediments and in the river outlet cores. The ratio was < 1 in the sediments down the profiles, suggesting that AVS might play a major role in binding heavy metals in the deep sediments of the PRE. The SEM may contain different chemical forms of trace metals in the sediments, depending on the metal reaction with 1 M cold HCl in the AVS procedure compared with the results of the sequential chemical extraction. The SEM/AVS ratio prediction may overestimate trace metal availability even in the sediments with high AVS concentrations. (c) 2004 Elsevier Inc. All rights reserved.
Resumo:
In situ energy dispersive X-ray diffraction measurements on nanocrystalline zinc sulfide have been performed by using diamond anvil cell with synchrotron radiation. There is a phase transition which the ultimate structure is rocksalt when the pressure is up to 16.0GPa. Comparing the structure of body materials, the pressure of the phase transition of nano zinc sulfide is high. We fit the: Birch-Murnaghan equation of state and obtained its ambient pressure bulk modulus and its pressure derivative. The bulk modulus of nanocrystalline zinc sulfide is higher than that of body materials, it indicate that the rigidity of nanocrystalline zinc sulfide is high.
Resumo:
A simple one-pot method is developed to prepare size-and shape-controlled copper(I) sulfide (Cu2S) nanocrystals by thermolysis of a mixed solution of copper acetylacetonate, dodecanethiol and oleylamine at a relatively high temperature. The crystal structure, chemical composition and morphology of the as-obtained products are characterized by powder x-ray diffraction (PXRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The morphology and size of the Cu2S nanocrystals can be easily controlled by adjusting the reaction parameters. The Cu2S nanocrystals evolve from spherical to disk-like with increasing reaction temperature. The spherical Cu2S nanocrystals have a high tendency to self-assemble into close-packed superlattice structures. The shape of the Cu2S nanodisks changes from cylinder to hexagonal prism with prolonged reaction time, accompanied by the diameter and thickness increasing. More interestingly, the nanodisks are inclined to self-assemble into face-to-face stacking chains with different lengths and orientations. This one-pot approach may extend to synthesis of other metal sulfide nanocrystals with different shapes and sizes.