71 resultados para B., A. P.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

通过测定原代培养鲫鱼(Carassius auratus)肝细胞中雌激素受体所介导的卵黄蛋白原(Vtg)生成以及芳香烃受体所介导的CYP1A1基因转录水平的变化, 建立了一种类雌激素体外实验模型. 实验结果表明, Vtg和Vtg mRNA表达与己烯雌酚(DES)之间均有很好的剂量-效应关系, Vtg和Vtg mRNA可作为指示类雌激素毒性的生物标志物. TCDD, B[a]P显著抑制鱼肝细胞中DES诱导的Vtg和Vtg mRNA表达, 呈明显的抗雌激素效应, 并同时激活了CYP1A1 基因的表达;

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogenated amorphous silicon films co-doped with oxygen (O), boron (B) and phosphorus (P) were fabricated using PECVD technique. The erbium (Er) implanted samples were annealed in a N-2 ambient by rapid thermal annealing. Strong photoluminescence (PL) spectra of these samples were observed at room temperature. The incorporation of O, B and P could not only enhance the PL intensity but also the thermal annealing temperature of the strongest PL intensity. It seems that the incorporation of B or P can decrease the grain boundary potential barriers thus leading to an easier movement of carriers and a stronger PL intensity. Temperature dependence of PL indicated the thermal quenching of Er-doped hydrogenated amorphous silicon is very weak.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

现在普遍采用ITO薄膜(In_2O_3:Sn)作为太阳电池的窗口材料,但由于In资源的稀缺,使太阳能电池的成本增加。Zn-O是一种低成本材料,具有良好的电学、光学特性,因此可代替ITO薄膜作为窗口材料。由于ZnO/n-Si异质结太阳电池的转化效率为6.9%~8.5%,而ITO光电转换效率为12%~15%,采用液态源掺杂方法,取得较好效果,证实了掺PB对纳米ZnO薄膜提高导电性是有效的。本文利用扫描俄歇探针等手段研究分析了掺PB随热处理温度的变化对纳米Zn-O薄膜电学特性的影响。在研制过程中,对掺入PB的纳米Zn薄膜,曾采用X射线衍射议进行分析,其结果未见PB。

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The cloud-point temperatures (T-cl's) of both binary poly(ethylene oxide) (PEO)-poly(ethylene oxide-b-dimethylsiloxane) [P(EO-b-DMS)] and ternary[toluene/PEO/P(EO-b-DMS)] systems were determined by light scattering measurements at atmospheric pressure. The phase separation behavior upon cooling in the ternary system has been investigated at atmospheric pressure and under high pressure and compared to the phase behavior in the binary system. The phase transition temperatures have been obtained for all of the samples. As a result, the pressure induces compatibility in the binary mixtures, but for the ternary system, pressure not only can induce mixing but also can induce phase separation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

元素化学计量学指从化学计量学的角度出发,通过分析比较生命物质不同结构层次(分子、细胞、器官、机体、种群、群落等)或生态系统中元素的相对比值,来研究各层次相互之间以及生态学过程中元素之间的关系。生态化学计量学研究可以把生态实体的各个层次存元素水平上统一起来,足近年来新兴的一个生态学研究领域,广泛应用于生态学研究中。C,N,P生物地球化学循环中的重要元素,在生态系统中占有重要地位,许多环境问题都与它们有关,由此这三种元素的化学计量学受到生态学家们的普遍关注。C:N:P学计量学在水生生态系统中研究较为深入,目前已发展到染色体水平,而在陆地生态系统中的研究较为匮乏近年来由于人类活动的强烈影响,这三种元素的循环在速度和规模上都发生了前所未有的改变,导致一系列环境问题的出现,因此C:N:P学计量学在陆地生态系统中的研究就显得尤为重要。作为地球生命存在基础的绿色植物,在地球上已有数亿年的演化历史,研究陆地植物的元素化学计量学不仅有助于深入了解植物存在于地球上的内在机制,而且可以为许多环境问题的解决提供理论依据。本文首先建立中国不同地区植物氮磷含量数据库,通过数据分析找出一般规律,并进一步揭示植物不同进化阶段N:P学计量比的变化规律。在此基础上,通过在内蒙古羊草草原设立不同施肥样地来模拟自然界不同氮磷环境,从试验水平上研究不同施肥处理及施肥梯度下生态系统中氮、磷、有机质的变化规律,并从化学计量学角度研究其内在机制。 利州新建成的中国维管植物数据库(包含1603种植物)研究了不同进化水平以及不同功能群(生活型)间植物N:P的变化规律,并沿胡焕庸线(胡线)把中团分为为东西两部分,从总体水平上对比了东、西部间叫植物氮磷含量以及N:P异同。结果表明:l)从演化水平来看,尽管氮磷含量表现出极大的差异,除豆科植物外,植物N:P本保持稳定水平;2)木本植物与草本植物的N:P差异.显著,木本植物之间(常绿乔木,常绿灌木,落叶乔木,落叶灌木)N:P具有显著差异;3)中国东西部植物养分含量和N:P表现出极显著差异,东部的养分含量低于西部,而N:P著高于西部。 在内蒙古羊草草原两块永久实验样地(样地A1980年围封样地和样地B:1999年田封样地)进行了为期两年的N素和P添加试验。氮素添加梯度为0,5,15,30,50,80 g NHN03.m.2.yr-1。P添加梯度为0,2,4,8,16,and 32 g P2Osm-2 yr-1(仪分析了羊草器官的结果)。分别从植物器官、物种、功能群水平研究了N素添加对N:P学计量学的影响,此外还研究了土壤和凋落物C:N:P学计量学对N素添加的响应。结合生物量的变化趋势,探讨了元素化学计量学对养分状况的指示作用。 1.羊草器官对施肥的响应结果表明,添加N素可以显著提高羊草器官中的含N量,p可以显著提高器官中的含P:除2001年样地A的根茎外,根茎中的含P基本不受N素添加的影响;茎中的含P同样表现出不受N素添加影响的趋势(2000年B区茎除外):N素添加可以显著增大羊草叶片中的含P(B区2000年叶片除外)。P添加对羊草器官的含N量没有影响;羊草器官中的氮磷含量施肥处理下表现出显著的正相关关系(N素添加下B区叶片除外)。N素添加对羊草器官的N:P没有显著影响(A茎2000年和B区叶片2000年除外):P添加显著降低了羊草器官中的N:P。 2.四种优势植物(羊草、羽茅、针茅和苔草)地上生物量和N:P学计量学对氮肥的响应研究发现,四个物种的氮磷含量均具有极显著相关关系;氮肥可以显著提高样地A的羽茅生物量,降低苔草的生物量,而使样地B中的羊草生物量增大;两块样地中,四个物种的氮磷含量及N:P均随N素水平的增高而增大(样地A的羽茅N:P除外)。 3.基于生活型划分的功能群(多年生根茎禾草,多年生丛生禾草,豆科植物,多年生杂类草,一二年生植物,灌木和半灌木)对N素添加的响应研究表明:施N可以提高样地A的多年生丛生禾草的生物量,而使样地B中的多年生根苇禾草增加;多年生杂类草的相对多度在两个样地中均随施氨水平的增加而显著 降低:在样地B中,施氮可以显著提高不同功能群的氮磷含量;在样地A,功能群N、P量对施肥的响应并没有一致的变化规律,添加N素可以显著提高不同功能群的含N量(豆科植物除外),多年生根茎禾草和多年生杂类草的P量有显著增大的趋势(P < 0.005),而其它功能群(豆科植物、灌木和小半灌木、多年生杂类草和~二年生杂类草)的P量基本恒定(P>0.05);在样地A,多年生丛生禾草,多年生杂类草,一二年生植物,灌木和半灌木的N:P随施氨水平的增加而显著增大,多年生根茎禾草和豆科植物的N:P基本不变;在样地B中,多年生丛生禾草的N:P随施氨水平的增加而显著增大,多年生根茎禾草、多年生杂类草和…二年生杂类草不受施氨水平的影响。 4.添加N素对根实验结果表明:两块样地中,上层根(0-10 cm)的生物量仅在施N后第一年显著增加,而下层根(10-20 cm)的地下生物量在两年的施N处理下均不受施肥梯度的影响i在样地A,施肥后第一年对根的N、P量影响不显著,施肥后第二年可以显著增大上层根的N、P量;在样地B中,添加N素后第一年可以显著增大根的含P; 在两个样地中,两年的N肥处理对根的N:P没有显著影响:在施氨处理中,根的N、P量及N:P在施肥第一年的响应要高于第二年。 5.所有处理中,上层土壤(O-lO cm)养分含量(有机碳,全氮,全磷)均高于下层土壤(10-20 cm);在样地A,氮素添加对r十壤有机碳没有显著性作用,在施肥第一年可以显著增加上层土壤的N、P量,而在施肥后第二年对土壤N、P量没有显著影响;在样地B中,添加N素对两年的土壤养分均没有显著影响:养分添加两个样地土壤中的元素比值(C:N比,C:P,N:P)没有显著影响;土壤养分对施N一年后的响应要高于第二年。 6.养分添加对凋落物化学特征及化学计量学特征的影响研究结果表明:凋落物现存量不受施肥的影响;2001年凋落物现存量与2000年和2001年的地上生物量相关关系不显著;添加N素可以显著提高凋落物的N含量,而对有机碳含量和P量没有显著影响;凋落物C:N比随施肥梯度的增大而显著降低,N:P显著增高,而C:P没有明显变化。 以上研究结果表明,不同植物功能群的N:P存在差异,人类活动强烈影响自然植被中的植物N:P;但植物的N:P不受植物进化的影响(豆科植物除外);由于植物已有数亿年的演化历史,同时N与P植物的结构和功能上具有密切的联系,在生物地球化学循环中办存在耦合作用。因此植物N:P值恒定可能是一普适性规律。 N素添加试验表明,在植物根、地上器官、物种和功能群水平上N与P呈显著正相关关系,反映了植物体内的氮磷含量具有协同作用。共存种对N肥的响应不同,表明物种受不同元素的制约。因此除非把生态系统中所有物种对施肥的响应刻画清楚,笼统的认定生态系统缺乏某种元素是不适当的。 施肥试验表明,两种围封时间样地的主要限制性元素不同。极度退化(样地B)植物生长主要缺N,而在保护较好样地(样地A)P逐步成为一种限制因素。反映了随着保护时间的增加,植物生长逐渐由N限制型向N、P同限制型过渡。添加的养分要么被植物吸收,挥发到大气中,或以凋落物的形式返还到土壤表层。但是对养分的预算有待于进一步研究。土壤中的养分含量对N素添加有…个滞后效应,而植物响应较为迅速。功能群N:P在施肥实验中不能保持恒定,可能是由于实验时间较短的缘故;化学计量学的研究表明羊草草原分解凋落物的微生物受P的制约,可能是由于植物体内具有高的P再转运机制。这一结论有待于进一步的验证。氮肥降低了凋落物的C:N比,因此凋落物的分解速率可能将要发生改变。这需要进一步开展C循环的研究。

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AlGaN-based resonant-cavity-enhanced (RCE) p-i-n photodetectors (PDs) for operating at the wavelength of 330 nm were designed and fabricated. A 20.5-pair AlN/Al0.3Ga0.7N distributed Bragg reflector (DBR) was used as the back mirror and a 3-pair AlN/Al0.3Ga0.7N DBR as the front one. In the cavity is a p-GaN/i-GaN/n-Al0.3Ga0.7N structure. The optical absorption of the RCE PD structure is at most 59.8% deduced from reflectance measurement. Selectively enhanced by the cavity effect, a response peak of 0.128 A/W at 330 nm with a half-peak breadth of 5.5 nm was obtained under zero bias. The peak wavelength shifted 15 nm with the incident angle of light increasing from 0 degrees to 60 degrees.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

人类向大气中排放的大量氮氧化合物和氟氯烃类化合物(CFC’s)引起臭氧分子的分解,导致到达地球表面的紫外辐射增加,特别是UV-B辐射增强。本项目以青杨组杨树为模式植物,从形态和生理方面研究了来自不同UV-B背景下的康定杨与青杨在增强UV-B下的反应及其反应差异,并探讨了干旱、施肥对它们抗UV-B能力的影响。杨树具有分布广、适应性强、在生态环境治理和解决木材短缺方面均占有重要位置,研究成果可为生态系统的恢复与重建提供理论依据和科学指导。主要研究结果有以下: 1. 在温室中经过增强UV-B处理,杨树的外部形态及生理活动受到了一定程度的影响。增强UV-B导致康定杨、青杨的生物量、叶面积及节间长度降低,叶片增厚,SOD活性升高,膜伤害增加,而对叶片数目、R/S、叶绿素A叶绿素B及整个叶绿素含量没有影响。两种杨树对UV-B胁迫的响应存在差异:在增强UV-B条件下,青杨的植株高度、生物量、叶面积、脯氨酸含量、长期用水效率受到的影响大于康定杨,相比而言,康定杨在比叶面积、叶片厚度、可溶性糖含量、UV-B吸收物质的含量及SOD和GPX活性方面增加的程度大于青杨。这些区别说明,来自于高海拔的康定杨比来自于低海拔的青杨对增强UV-B 具有更强的耐性。我们认为二者在叶片厚度、比叶面积、UV-B吸收物质含量及SOD、GPX活性差异是导致对增强UV-B耐性不同的原因。 2. 干旱与增强UV-B对杨树的生长和生理特性均产生了影响,而且两种胁迫共同作用时干旱表现减弱或加剧了UV-B对杨树某些形态和生理特性的影响。 据试验结果,干旱显著地降低了杨树的株高、叶片数目、叶面积,增加了叶片厚度,促进ABA积累,提高了CAT活性。对于干旱,两种杨树之间也表现出了一定的差异性。可溶性蛋白质和脯氨酸在青杨叶片中得到显著积累,而在康定杨中没有变化。此外,CAT、长期用水效率在康定杨中受到的影响更加明显。长期用水效率的不同变化趋势说明两种杨树对水分胁迫采用了不同的用水策略,康定杨采用的是节水用水策略,提高用水效率,而青杨采用的是耗水的用水策略。根据干旱对叶面积、脯氨酸、ABA量、CAT活性及长期用水效率等方面的影响,我们认为来自高海拔地区的康定杨比来自低海拔的青杨有更大的耐旱性,这是对生长环境长期适应的结果。在高海拔地区,因霜冻常带来土壤水分不可利用,降低了根系对水分的吸收,树木容易受到的生理性干旱。另外,高海拔的地区低的气温使植株对严寒有较强的耐性,减少了水分的需要。 生长于增强UV-B下的康定杨和青杨植株表现为高度降低,叶面积缩小,比叶面积增加;叶片栅栏组织、海绵组织均受到增强UV-B的影响,其厚度的增加导致整个叶片变厚。增强UV-B还显著提高了杨树的APX活性、UV-B吸收物质含量,而对叶片数目、ABA可溶性蛋白质含量及CAT活性没有产生影响。试验中也观察到了两种杨树对增强UV-B响应的差异:与康定杨相比,在增强UV-B下青杨株高、叶面积降低的程度更大一些,SOD活性显著提高。另外UV-B吸收物质受到的影响不同。根据这些差别,高海拔的康定杨(3500 m)比来自低海拔的青杨(1500 m)增强UV-B有较强的耐性。 与水分充足情况下UV-B对植株的影响相比,干旱对杨树抗增强UV-B产生了一定的影响,表现为加剧或减弱UV-B对植物的影响,但这种影响与形态、生理指标有关。当干旱与增强UV-B共同作用时,杨树植株的株高、叶面积进一步降低、叶片进一步增厚。就脯氨酸的积累的而言,在没有水分胁迫时,增强UV-B促使它显著增加,而在干旱处理下这种效果变得不明显。干旱对增强UV-B的影响还与杨树的种类有一定的关系。在康定杨中,干旱减弱了增强UV-B对栅栏组织与海绵组织的影响,且在植株高度、叶面积上表现出累加效应,而在CAT上交互作用显著;但在青杨中干旱则加剧增强UV-B对栅栏组织与海绵组织的影响,在植株高度、叶面积及比叶面积上表现出显著的交互作用。据碳同素分析,在水分充足的条件下,无论是康定杨,还是青杨,增强UV-B均导致其长期用水效率的提高,然而当两种胁迫共同作用时,长期用水效率则表现出差异,在青杨中,长期用水效率得到进一步增高,而康定杨中干旱的效应被增强UV-B所减轻。 3. 田间试验表明,杨树的生长、生理特征都受到养分和增强UV-B的影响。施肥对杨树的影响表现为:提高了叶面积、生物量及SOD的活性,降低了抗坏血酸含量。对于施肥作用,两种杨树的反应也有区别:在康定杨中施肥显著增加了的叶片长度、宽度及光合色素的含量,降低了净光合速率、气孔导度及胞间CO2浓度;在青杨中,则SOD、GPXAPX活性表现增加。从试验看出,施肥对来自于高海拔地区的康定杨(3500 m)的影响较大,对来自低海拔的青杨(1500 m)影响较小,这与它们对原产地的生境适应有一定关系。在康定杨生长的高海拔地区,低温度和湿度不能为地上凋落物或土壤中的根分解提供理想的条件,造成当地土壤的低养分状况,所以当肥料施用以后,效果显著。 经过增强UV-B处理,杨树叶片中UV-B吸收物质含量、GPX的活性得到提高,而脯氨酸、丙二醛、可溶性蛋白质、叶绿素及类胡萝卜素含量没有受到影响。对于增强UV-B两种杨树受到的影响也有所不同:在青杨中增强UV-B导致叶面积缩小,生物量、净光合速率降低,APX的活性及长期用水效率的提高,而对康定杨的这些指标没有产生显著影响,相反抗氧化酶的活性明显高于青杨。这些差异性是由于两种杨树对原产地不同UV-B背景的长期适应结果。康定杨长期生长在较高UV-B环境中,对UV-B有较强的耐性。而青杨适应于较低的UV-B环境,对增强UV-B较为敏感。 试验中施肥也影响了植株对增强UV-B的反应,不过这种影响与杨树的种类及测定指标有一定的相关性。例如,在缺肥的情况下,青杨的长期用水效率和康定杨的叶绿素含量都受到增强UV-B的显著影响,而施肥以后这种影响变得不显著。在缺肥的条件下,GPXAPX在青杨中的活性、GPX在康定杨中的活性对增加UV-B反应不敏感;而施肥以后则变化显著,同样胞间CO2浓度在康定杨也有类似的变化。 For past decades, Ultraviolet radiation, especially UV-B reaching the Earth’s surface increased because of depletion of ozone layer resulted from emission of NxO and CFC’s from human activities. In this experiment, different species of Populus section Tacamahaca Spach from different UV-B background were selected as a model plant to assess the effects of enhanced UV-B radiation. Morphological and physiological traits induced by enhanced UV-B were observed and the different responses between P. kangdingensis and P. cathayana were discussed, furthermore the influences of drought and fertilizer on responses induced by enhanced UV-B were studied. Since poplars play an important role in lumber supply, and are important component of ecosystems due to their fast growth and wide adaptation, the study could provide a strong theoretical evidence and scientific direction for the afforestation, and rehabilitation of ecosystem. The results are as follows: 1. The experiment conducted in a greenhouse indicated that morphological and physiological traits of two poplars were affected by enhanced UV-B radiation. Enhanced UV-B radiation not only reduced biomass, leave area and internode length, but also increased leaf thickness and SOD activity as well as MDA concentration and electrolyte rate. However, no significant changes in leaf numbers, root shoot ratio, and total chlorophyll and chlorophyll component were observed. There were different responses to enhanced UV-B radiation between two species. Compared with P. kangdingensis, cuttings of P. cathayana, exhibited lower height increment and smaller leaf area. In addition, there were significant differences in free proline, soluble protein, and UV-B absorbing compounds, and the activity of SOD and GPX, long-term WUE between them. Differences in plant height, biomass, leaf area, free proline concentration, and long-termed WUE showed that P. cathayana were more affected by enhanced UV-B radiation than P. kangdingensis. In contrast, more increase of specific leaf mass, leaf thickness, and soluble sugar, and UV-B absorbing compounds, and activity of SOD and GPX were observed in P. kangdingensis. According to these results, we suggested that P. kangdingensis from high elevation, which adapted to higher UV-B environments, had more tolerance to enhanced UV-B than P. cathayana from low elevation, which adapted to lower UV-B environment. We believe it was the difference of leaf thickness, specific leaf mass, and UV-B absorbing compounds as well as the activity of SOD and GPX resulted in lower adaptation of P. cathayana to enhanced UV-B radiation. 2. Growth and physiological traits of two poplars were affected by both drought and enhanced UV-B radiation. Moreover, it was observed that when two stresses applied together drought could exacerbate UV-B effects or decrease sensitivity to UV-B. In the experiment, drought significantly decreased plant height, leaf numbers, leaf area, and increased leaf thickness, and ABA, and CAT activity of two poplars. There were significant interspecific differences to drought stress. Exposed to drought, soluble protein and proline concentration were increased in P. cathayana but not in P. kangdingensis. However, more changes in CAT and long-term WUE were observed in kangdingensis. Different change in long-term WUE suggests that two poplars adapted different water-use strategies. P. kangdingensis employ a conservative water-use strategy, whereas P. cathayana employ a prodigal water-use strategy. Based on the differences in leaf area, accumulation of free proline and ABA, CAT activity as well as long-term WUE, we believed that P. kangdingensis from high elevation had a greater tolerance to drought than P. cathayana from low elevation,which is the result of adaptation to local environment. In high elevation area, trees are prone to suffer from physiological drought because of un-movable water caused by frost. Besides lower temperature enable the plants had greater adaptability to frost as a results the requirement of water is reduced Enhanced UV-B radiation decreased shoots height, leaf area, and increased specific leaf mass and thickness of palisade and sponge layer as well as APX activity and UV-B absorbing compounds in both species. Whereas, leaf numbers, ABA content, soluble protein and CAT activity showed no differences to enhanced UV-B radiation. Interspecific differences were also observed. Compared with P. kangdingensis, P. cathayana showed lower shoot height and smaller leaf area, higher SOD activity. Besides, variation in UV-B absorbing compounds was found. These differences suggested that P. kangdingensis from high elevation (3500 m) was more tolerant to enhanced UV-B radiation than P. cathayana from low elevation (1500 m). Compared with morphological and physiological changes induced by enhanced UV-B radiation under well-watered conditions, drought exacerbated or decreased these changes. However, these effects vary with parameters measured. When two stresses applied together, shoot height and leaf area further decreased while leaf thickness further increased. Under well-watered conditions, enhanced UV-B radiation significantly increased proline content, but such effect was not observed under drought conditions. The effect of drought on enhanced UV-B radiation was related to species. For example, drought reduced the effects of enhanced UV-B radiation on palisade parenchyma and sponge mesophyll in P. kangdingensis, and additive effects in shoot height and leaf area and interactive effect CAT activity were observed. In contrast, for P. cathayana drought significantly exacerbated the effects of enhanced UV-B radiation on palisade parenchyma and sponge mesophyll; there were noticeable interaction in shoot height, leaf area and specific leaf mass. As far as long-term WUE is concerned, it was increased by enhanced UV-B radiation under well-watered conditions in both species. While different effect was observed between two species in combination of two stresses. Long-term water use efficiency was further increased in P. cathayana whereas the effect was less significant in P. kangdingensis. 3. The field experiment showed that growth and physiological traits of poplars were affected by nutrition and enhanced UV-B radiation. Fertilization significantly increased leaf area, biomass and SOD activity, reduced Ascorbic acid concentration. There was interspecific difference in response to fertilization. For P. kangdingensis, fertilization significantly increased leaf width, leaf length and photosynthetic pigments content while net photosynthetic rate and stomatal conductance, intercellular CO2 concentration were significantly decreased. However, for P. cathayana, these parameters were unaffected except the increase of SOD, GPX and APX activity. From above, it could concluded that P. kangdingensis from high elevation was more affected by fertilization than P. cathayana, This difference was due to adaptation to local environment., The low temperature and moisture where P. kangdingensis was collected can not provided optimum to decompose roots and litter fall as a result the nutrition in soil was poor. Exposed to enhanced UV-B radiation, for both species UV-B absorbing compounds and GPX activity were significantly increased while proline, MDA, soluble protein, chlorophyll, carotenoids were not affected. Different responses were also observed between the two species. Enhanced UV-B radiation caused significant decreases in leaf area, biomass, net photosynthetic rate and increase in APX activity and long-term WUE in P. cathayana but not in P. kangdingensis. In addition, activity in antioxidant enzymes was much higher in P. kangdingensis than in P. cathayana. In the experiment fertilization affected responses of cuttings to enhanced UV-B radiation, but it concern species and parameters measured. Long-term WUE in P. cathayana and chlorophyll in P. kangdingensis were significantly increased by enhanced UV-B radiation under non-fertilization treatments while the increase was not found under fertilization treatment. In contrast, under no fertilization treatment enhanced UV-B radiation did not affected GPX and APX activity in P. cathayana and GPX in P. kangdingensis while significant increase appeared after application of fertilization. Similar effect of enhanced UV-B radiation on intercellular CO2 concentration in P. kangdingensis was observed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

臭氧层损耗导致的地球表面UV-B辐射增强以及温室气体增多引起的气候变暖是当今两大全球环境问题。UV-B辐射增强和气候变暖对陆地植物和生态系统产生深远影响,并已成为全球变化研究的重要议题。作为世界第三极的青藏高原,UV-B 辐射增强以及气候变暖现象尤为突出。本试验所在林区是青藏高原东缘的主要林区,具有大面积的亚高山人工针叶成熟林,在全球变化背景下该森林的天然更新潜力如何是急待回答的重要问题。基于此,本研究围绕森林树种的种子和幼苗这一更新的重要阶段,开展了气候变暖、UV-B辐射增强和联合胁迫对云杉种子萌发及幼苗定居影响的研究,旨在全球变化背景下,探讨全球变暖、UV-B 辐射增强和联合胁迫是否对西南地区大面积人工亚高山针叶林更新的种子萌发和幼苗定居阶段产生影响。 本文以青藏高原东缘亚高山针叶林主要树种云杉为研究对象,研究云杉种子萌发及幼苗的生长和生理对UV-B辐射增强与气候变暖的响应。采用UV-B荧光灯(UV-lamp来模拟增强的UV-B 辐射,此外,采用开顶式有机玻璃罩(OTCs)来模拟气候变暖。本试验包括四个处理:(1)大气UV-B 辐射+大气温度(C);(2)大气UV-B 辐射+模拟气候变暖(W);(3)增强的UV-B辐射+大气温度(U);(4)增强的UV-B辐射+模拟气候变暖(U+W)。 根据本试验结果,UV-B辐射增强对云杉种子萌发没有显著影响,它对萌发云杉幼苗的影响主要体现在幼叶展开以后。根据两年的试验结果,增强的UV-B辐射降低了云杉幼苗抗氧化酶活性,降低了抗氧化物质的含量,此外,造成了膜质的过氧化,表现为MDA针叶中的积累。增强的UV-B照射处理萌发云杉幼苗两年后,幼苗的生长受到显著抑制。我们的结果显示,OTCs分别提高了空气(10 cm)和土壤(5 cm)温度1.74℃和0.94 ℃。增温显著地促进了云杉种子提前萌发,提高了萌发速率和萌发比率,而且,明显地促进了幼苗的生长,表现为株高和生物量累积的显著增长。此外增温还有利于云杉幼苗根的伸长生长以及生物量的累积,这可以使云杉幼苗更好地利用土壤中的水分和营养元素。 根据本试验结果,温度升高显著地促进了增强UV-B辐射下云杉萌发幼苗的生长,这说明,温度升高缓解了UV-B辐射增强对云杉萌发幼苗的负面影响。这种缓解作用可能是温度升高对UV-B辐射增强处理下幼苗的抗氧化系统活性改善的结果。温度升高还缓解了高UV-B辐射对云杉幼苗根生长的抑制作用,这也可能是增温缓解伤害的原因之一。此外,根据我们的试验结果,增温与UV-B辐射增强联合作用(U+W)下云杉萌发幼苗的生长状况好于大气温度与大气UV-B辐射联合(C)处理,表现为株高、地径、根长和生物量积累均高于C处理,因此可以推断,UV-B辐射增强与气候变暖同时存在对萌发幼苗在两年之内的生长没有产生抑制作用,也就是说,气候变暖的缓解作用完全弥补了UV-B辐射增强的有害作用。 同样,增强的UV-B辐射显著影响了云杉幼苗的光合作用,表现为净光合速率(Pn)和表观量子效率(Φ)的提高,此外,根据我们的试验结果,它还造成了PSII的光抑制。增强的UV-B辐射显著抑制了云杉幼苗对营养元素的吸收,表现为大量营养元素、碳、钙、镁和锌含量的降低,但是,它却显著促进了铁在植株体内的积累。增温显著地提高了净光合速率,但是,它对光系统II(PSII)的光化学效率影响不大。温度升高缓解了UV-B增强对云杉幼苗光合作用的伤害,表现为净光合速率、表观量子效率以及PSII光化学效率的提高。此外,温度升高还缓解了UV-B辐射增强对离子吸收的抑制作用。 Enhanced UV-B radiation due to the reduction of O3 layer and global warming induced by increased greenhouse gases in the air have become the two pressing aspects of global climate changes. Moreover, enhanced UV-B radiation and warming have profound and long-term impacts on terrestrial plants and ecosystems, and the studies focusing on the two factors have attracted many attentions. Qinghai-Tibetan Plateau is the third in elevation in the world, and enhanced UV-B radiation and climate warming are especially prominent in this region. Our research located in the main forest belt in the eastern Qinghai-Tibetan Plateau where large areas of subalpine coniferous forests distributed. Based on that, we carried out a research to study the effects of enhanced UV-B radiation and climate warming on seed germination and seedlings growth of seedlings which are the important basic stage in forest regeneration. This research was arranged by a complete factorial design and included two factors (UV-B radiation and temperature) with two levels. The UV-lamps were used to manipulate the supplemental UV-B radiation and open-top chambers (OTCs) were adopted to increase temperature. The four treatments were: (1) C, ambient UV-B without warming; (2) U, enhanced UV-B without warming; (3) W, ambient UV-B with OTCs warming; (4) U+W, enhanced UV-B with OTCs warming. The main results were exhibited as follows: 1. Based on our results in this research, OTCs increased temperature on average 1.74℃ in air (10 cm above ground) and 0.92 ℃ in soil (5 cm beneath ground). Furthermore, OTCs also slightly reduced soil moisture and relative air humidity, however, the differences was not statistically significant. 2. Our results showed that enhanced UV-B had no significant effects on the seeds germination of P. asperata. Enhanced UV-B affected sprouts of P. asperata until the needles unfolded. During two years, enhanced UV-B inhibited the efficiency of the antioxidant defense systems, and as a result, it induced oxidant stress and the accumulation of MDA in needles. After two years of exposure to enhanced UV-B, the growth of P. asperata sprouts was markedly restrained compared with those under ambient UV-B radiation and temperature (C). Warming significantly stimulated the germination speed and increased the germination rate of P. asperata seeds. In the next place, it prominently facilitated the growth of P. asperata sprouts, represented as improvements in stem elongation and biomass accumulation. Furthermore, warming also increased root growth of P. asperata sprouts, which could made sprouts more efficient to use water and nutrient elements in soil. In this research, warming alleviated the deleterious effects of enhanced UV-B on P. asperata sprouts. It markedly stimulated the growth of P. asperata sprouts exposed to enhanced UV-B. The ease effects of warming on the abilities of the antioxidant defense systems might account for its amending effects on growth. After two years of exposure to enhanced UV-B radiation and warming, the growth of P. asperata sprouts was better than those under ambient UV-B radiation without warming (C), which could be seen from the higher plant height, basal diameter, root length and total biomass accumulation compared with C. 3. Enhanced UV-B radiation significantly influenced the photosynthesis processes of two-year old P. asperata seedlings. Our results showed that enhanced UV-B reduced the net photosynthetic rate (Pn) and the apparent quantum efficiency (Φ), and induced photoinhibition of photosynthetic system II (PSII). Enhanced UV-B significantly decreased the concentration of nitrogen (N), phosphorous (P), potassium (K), calcium (Ca), magnesium (Mg) and zinc (Zn), however, it increased the accumulation of iron (Fe) in the whole plant of P. asperata seedlings. Warming significantly stimulated Pn of P. asperata seedlings but it had no prominent impacts on the photochemical efficiency of PSII. In our research, warming also alleviated the harmful effects of enhanced UV-B on photosynthesis and absorption of ions of P. asperata seedlings. It increased Pn, Φ and the photochemical efficiency of PSII in seedlings exposed to enhanced UV-B. Moreover, warming also increased the absorption of ions of the seedlings exposed to enhanced UV-B radiation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ass="partOrAll">
ass="abut_top part">alt="" hspace="8" width="149" height="204" align="left" />内容包括:复合材料及其结构的强度、振动、冲击、疲劳、损伤、粘弹性等力学问题及机敏材料等的力学分析与设计。
ass="abut">pan>pan>
ass="abut">pan>目录pan>
ass="abut_top partOrAlls"><p><a href="http://book.chaoxing.com/ebook/read_11245622_1.html" target="_blank">第一章 复合材料齿轮粘弹性力学问题的研究&amp;张恒 王震鸣a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_1.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_2.html" target="_blank">第二节 齿轮复合材料的粘弹性a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_4.html" target="_blank">第三节 复合材料齿轮的温度场分析a>p>
ass="allContent" style="display: block"><p><a href="http://book.chaoxing.com/ebook/read_11245622_9.html" target="_blank">第四节 复合材料齿轮的粘弹性应力分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_17.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_18.html" target="_blank">第二章 陶瓷基复合材料性能的细观力学研究&amp;杜善义 李文芳a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_18.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_19.html" target="_blank">第二节 陶瓷基复合材料增韧的研究进展a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_22.html" target="_blank">第三节 研究含随机分布微裂纹非均匀体有效性能的一个新模型a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_24.html" target="_blank">第四节 随机分布微裂纹对相变陶瓷力学性能的影响a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_27.html" target="_blank">第五节 随机分布微裂纹对晶须增韧CMC材料性能的影响a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_30.html" target="_blank">第六节 随机分布微裂纹对延性相增韧CMC材料力学性能的影响a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_34.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_36.html" target="_blank">第三章 动态松弛法及其在复合材料叠层板壳非线性分析中的应用&amp;黄小清 范赋群a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_36.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_36.html" target="_blank">第二节 动态松弛法的基本原理a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_38.html" target="_blank">第三节 求解叠层板及叠层扁壳的经典非线性弯曲问题a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_41.html" target="_blank">第四节 求解双模量复合材料叠层板的非线性弯曲问题a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_44.html" target="_blank">第五节 求解复合材料叠层平板与圆柱微曲板的非线性稳定问题a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_45.html" target="_blank">第六节 对叠层板的线性和非线性初始破坏分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_47.html" target="_blank">第七节 结束语a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_47.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_49.html" target="_blank">第四章 单向复合材料损伤本构模型的细观分析&amp;夏源明 袁建明 杨报昌a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_49.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_50.html" target="_blank">第二节 单向复合材料的一维损伤本构模型a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_56.html" target="_blank">第三节 单向复合材料的Monte Carlo数值模拟a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_65.html" target="_blank">第四节 单向复合材料冲击拉伸过程的Monte Carlo数值模拟a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_69.html" target="_blank">第五节 结束语a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_70.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_71.html" target="_blank">第五章 短纤维复合材料的弹性与弹塑性行为的理论研究&amp;陈浩然 杨庆生a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_71.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_71.html" target="_blank">第二节 短纤维复合材料的特点a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_72.html" target="_blank">第三节 短纤维复合材料的弹性性能a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_76.html" target="_blank">第四节 短纤维复合材料的弹塑性性能a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_82.html" target="_blank">第五节 结束语a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_82.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_84.html" target="_blank">第六章 复合材料中的应力波&amp;张继栋a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_84.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_84.html" target="_blank">第二节 层状无限介质中的波a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_86.html" target="_blank">第三节 均匀各向异性板中的波a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_89.html" target="_blank">第四节 各向异性层合板中的波与弹性力学方法a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_92.html" target="_blank">第五节 各向异性层板中的波与近似方法a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_94.html" target="_blank">第六节 复合材料中应力波的细观力学分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_96.html" target="_blank">第七节 应力波的实验研究a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_98.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_101.html" target="_blank">第七章 半解析数值法在复合材料及其结构力学问题中的应用&amp;洪志泉 方赤峰a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_101.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_101.html" target="_blank">第二节 半解析数值法的概述a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_107.html" target="_blank">第三节 半解析数值法的应用a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_113.html" target="_blank">第四节 结束语a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_113.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_116.html" target="_blank">第八章 复合材料界面和界面力学的几个问题&amp;伍章健 余寿文a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_116.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_116.html" target="_blank">第二节 界面研究的几个基本问题a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_119.html" target="_blank">第三节 复合材料界面的细观力学研究方法a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_121.html" target="_blank">第四节 界面相与复合材料桥联协同作用的机理a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_125.html" target="_blank">第五节 界面断裂力学a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_128.html" target="_blank">第六节 复合材料界面力学的实验a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_130.html" target="_blank">第七节 结论和展望a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_130.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_133.html" target="_blank">第九章 超高模聚乙烯纤维增强复合材料的力学性能和微观结构&amp;冼杏娟a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_133.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_133.html" target="_blank">第二节 纵向的比拉伸强度和比刚度高a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_134.html" target="_blank">第三节 优越的能量吸收性能a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_136.html" target="_blank">第四节 界面粘结对UHMPE纤维复合材料力学性能的影响a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_137.html" target="_blank">第五节 UHMPE纤维与其他高性能纤维混杂时的混杂效应a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_139.html" target="_blank">第六节 UHMPE纤维编织复合材料的力学性能a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_139.html" target="_blank">第七节 UHMPE纤维增强复合材料的动态力学性能a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_141.html" target="_blank">第八节 加工方法对UHMPE纤维复合材料试件力学性能的影响a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_143.html" target="_blank">第九节 UHMPE纤维及其复合材料的其他性能a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_144.html" target="_blank">第十节 结束语a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_144.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_145.html" target="_blank">第十章 机敏材料和机敏结构的研究进展&amp;孙国钧 茅人杰a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_145.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_147.html" target="_blank">第二节 机敏材料在主动振动控制技术中的应用前景a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_149.html" target="_blank">第三节 光纤在机敏结构中的应用a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_150.html" target="_blank">第四节 电流变体在机敏结构中的应用a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_151.html" target="_blank">第五节 形状记忆合金增强复合材料a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_154.html" target="_blank">第六节 压电材料在机敏结构中的应用a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_156.html" target="_blank">第七节 结束语a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_156.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_160.html" target="_blank">第十一章 复合材料离散加筋曲板在面内载荷作用下用于屈曲分析的有限条法&amp;童贤鑫 B・盖尔a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_160.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_160.html" target="_blank">第二节 典型的复合材料曲板条元素的分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_175.html" target="_blank">第三节 结构屈曲判别式的建立a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_177.html" target="_blank">第四节 解法,算例和计算结果a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_179.html" target="_blank">第五节 小结a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_180.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_180.html" target="_blank">附录a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_182.html" target="_blank">第十二章 在湿热环境下碳纤维/树脂复合材料结构强度的研究&hellip;&hellip;&hellip;&hellip;a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_182.html" target="_blank">俞树奎 和润忠 郑锡涛a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_182.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_182.html" target="_blank">第二节 飞机复合材料结构的湿热环境设计准则a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_186.html" target="_blank">第三节 复合材料的吸湿规律和预浸润技术a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_192.html" target="_blank">第四节 湿热环境对复合材料力学性能的影响a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_194.html" target="_blank">第五节 在湿热环境下复合材料机械连接件的强度与寿命a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_197.html" target="_blank">第六节 复合材料结构的湿热环境试验系统a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_200.html" target="_blank">第七节 在湿热/温载谱作用下结构强度和耐久性的试验验证a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_204.html" target="_blank">第八节 结束语a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_204.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_205.html" target="_blank">第十三章 纤维增强复合材料中的桥连裂纹&amp;罗海安a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_205.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_206.html" target="_blank">第二节 桥连裂纹的理论模型a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_209.html" target="_blank">第三节 桥连裂纹的稳定性a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_212.html" target="_blank">第四节 桥连裂纹的临界载荷a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_215.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_216.html" target="_blank">第十四章 复合材料层板的强迫振动问题&amp;沈大荣 李华a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_216.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_216.html" target="_blank">第二节 几类典型铺设层板线性强迫振动方程的推导a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_218.html" target="_blank">第三节 几类典型铺设层板线性强迫振动问题的数值计算a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_224.html" target="_blank">第四节 几类典型铺设层板的非线性强迫振动分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_226.html" target="_blank">第五节 几类典型铺设层板非线性强迫振动问题的数值计算a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_230.html" target="_blank">第六节 讨论和结论a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_232.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_234.html" target="_blank">第十五章 复合材料机翼在气动弹性和强度约束下的设计剪裁研究&amp;丁惠梁a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_234.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_234.html" target="_blank">第二节 COMPASS系统的结构配置a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_235.html" target="_blank">第三节 结构分析与灵敏度分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_237.html" target="_blank">第四节 优化剪裁技术a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_239.html" target="_blank">第五节 实例应用a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_245.html" target="_blank">第六节 结束语a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_245.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_246.html" target="_blank">第十六章 复合材料梁的强度、冲击和疲劳性能的研究&amp;薛元德 陈心爽 刘壮健a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_246.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_246.html" target="_blank">第二节 损伤和破坏机制a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_247.html" target="_blank">第三节 复合材料梁的强度a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_252.html" target="_blank">第四节 冲击性能a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_255.html" target="_blank">第五节 疲劳a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_260.html" target="_blank">参考文献a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_261.html" target="_blank">第十七章 金属-陶瓷梯度材料的优化设计&amp;王继辉 张清杰 吴代华a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_261.html" target="_blank">第一节 引言a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_262.html" target="_blank">第二节 梯度材料的微观结构特征a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_264.html" target="_blank">第三节 梯度材料的微观力学和性能预测a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_265.html" target="_blank">第四节 热应力分析和设计模型a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_267.html" target="_blank">第五节 热应力分析结果与讨论a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_270.html" target="_blank">第六节 结论a>p><p><a href="http://book.chaoxing.com/ebook/read_11245622_270.html" target="_blank">参考文献a>p>

Relevância:

60.00% 60.00%

Publicador:

Resumo:

alt="" hspace="6" width="150" height="213" align="left" />

ass="partOrAll">
ass="abut_top part">全书以命令行方式通过大量教学实例和工程应用实例,介绍了建立模型、求解和结果后处理的全过程。
ass="abut">
ass="abut_top partOrAlls"><p><a href="http://book.chaoxing.com/ebook/read_11266067_1.html" target="_blank">目 录a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_1.html" target="_blank">前言a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_1.html" target="_blank">第1篇教学实例篇a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_1.html" target="_blank">第1章简单拉压杆结构a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_2.html" target="_blank">1.1铰接杆在外力作用下的变形a>p>
ass="allContent" style="display: block"><p><a href="http://book.chaoxing.com/ebook/read_11266067_6.html" target="_blank">1.2人字形屋架的静力分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_10.html" target="_blank">1.3超静定拉压杆的反力计算a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_13.html" target="_blank">1.4平行杆件与刚性梁连接的热应力问题a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_17.html" target="_blank">1.5端部有间隙的杆的热膨胀a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_21.html" target="_blank">第2章梁的弯曲问题a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_21.html" target="_blank">2.1等截面简单超静定梁的平面弯曲分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_29.html" target="_blank">2.2工字形截面外伸梁的平面弯曲a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_35.html" target="_blank">2.3矩形截面梁的纵横弯曲分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_45.html" target="_blank">2.4悬臂梁的双向弯曲a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_61.html" target="_blank">2.5 圆形截面悬臂杆的弯扭组合变形a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_65.html" target="_blank">2.6悬臂等强度梁的弯曲a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_75.html" target="_blank">2.7弹性地基半无限长梁在端部力和力偶作用下的变形a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_79.html" target="_blank">2.8偏心受压杆的大变形分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_85.html" target="_blank">第3章杆系稳定性计算a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_85.html" target="_blank">3.1利用梁单元计算压杆稳定性a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_89.html" target="_blank">3.2利用实体单元计算压杆稳定性a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_94.html" target="_blank">3.3悬臂压杆的过曲屈分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_103.html" target="_blank">3.4平面钢架的平面外失稳a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_115.html" target="_blank">第4章实体模型应力分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_115.html" target="_blank">4.1 均布荷载作用下深梁的变形和应力a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_128.html" target="_blank">4.2一对集中力作用下的圆环a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_140.html" target="_blank">4.3用实体单元分析变截面杆的拉伸a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_148.html" target="_blank">4.4用二维实体单元分析等截面悬臂梁的平面弯曲a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_155.html" target="_blank">4.5变截面悬臂梁在端部集中力作用下的平面静力分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_164.html" target="_blank">4.6纯弯曲悬臂曲梁的二维静力分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_173.html" target="_blank">4.7端部集中力作用的悬臂圆环曲梁平面弯曲的三维分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_189.html" target="_blank">4.8均匀拉力作用下含圆孔板的孔边应力集中a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_205.html" target="_blank">4.9两端固定的厚壁管道在自重作用下的变形和应力a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_214.html" target="_blank">第5章膜和薄壳问题a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_214.html" target="_blank">5.1含椭圆孔的椭圆薄膜在外部张力作用下的静力分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_224.html" target="_blank">5.2圆形薄膜大变形静力分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_230.html" target="_blank">5.3柱形容器在内压作用下的静力分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_234.html" target="_blank">5.4圆柱形薄壳在均匀内压作用下的静力分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_239.html" target="_blank">第6章板的弯曲和壳体计算a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_239.html" target="_blank">6.1简支和固支圆板的在不同荷载作用下的弯曲a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_250.html" target="_blank">6.2悬臂长板的大挠度弯曲a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_262.html" target="_blank">6.3用壳体单元分析受均布荷载作用的固支圆板大挠度弯曲a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_267.html" target="_blank">6.4利用拉伸操作建立膨胀弯管模型a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_276.html" target="_blank">6.5两端简支开口柱壳在自重作用下的静力分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_282.html" target="_blank">6.6圆筒在一对横向集中力作用下的变形a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_291.html" target="_blank">6.7两边简支开口柱壳在集中力作用下的大变形曲屈a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_300.html" target="_blank">第7章简单振动系统a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_300.html" target="_blank">7.1单自由度弹簧质量系统的频率计算a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_304.html" target="_blank">7.2悬索自由振动的频率a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_310.html" target="_blank">7.3用弹簧单元连接的圆盘的扭转振动a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_314.html" target="_blank">7.4圆杆连接圆盘的扭转振动a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_318.html" target="_blank">7.5钻杆的扭转自由振动a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_325.html" target="_blank">第8章梁的振动分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_325.html" target="_blank">8.1简支梁的自振频率计算a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_335.html" target="_blank">8.2 自由―自由梁的纵向自由振动a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_339.html" target="_blank">8.3有轴向压力作用的简支梁的自由振动a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_345.html" target="_blank">8.4用壳体单元计算悬臂等强度梁的自由振动a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_351.html" target="_blank">8.5矩形截面薄壁悬臂梁的自由振动a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_358.html" target="_blank">第9章膜板和实体振动a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_358.html" target="_blank">9.1 圆形张紧薄膜的自由振动a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_364.html" target="_blank">9.2薄膜二维非轴对称自由振动分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_370.html" target="_blank">9.3薄膜三维非轴对称振动分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_378.html" target="_blank">9.4悬臂长板的自由振动频率a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_382.html" target="_blank">9.5悬臂宽板的模态分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_388.html" target="_blank">9.6固支圆板的自由振动a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_392.html" target="_blank">9.7用实体单元分析圆环的振动a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_397.html" target="_blank">9.8机翼模型的振动分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_405.html" target="_blank">第1 0章平面建模分析和三维实体建模a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_405.html" target="_blank">10.1 带三个圆孔的平面支座分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_410.html" target="_blank">10.2角支座应力分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_416.html" target="_blank">10.3 体斜支座的实体建模a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_422.html" target="_blank">10.4四分之一车轮的实体建模a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_425.html" target="_blank">10.5轴承支座的实体建模a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_434.html" target="_blank">第1 1章最优化设计a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_434.html" target="_blank">11.1概述a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_435.html" target="_blank">11.2最优化问题框架a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_436.html" target="_blank">11.3 ANSYS优化设计流程a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_436.html" target="_blank">11.4变截面悬臂梁的外形形状优化a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_447.html" target="_blank">11.5平面刚架的优化设计a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_454.html" target="_blank">第12章层合板和断裂力学a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_454.html" target="_blank">12.1 四边简支方形层合板在均布外载作用下的变形a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_466.html" target="_blank">12.2均布拉力作用下含裂纹板的应力强度因子计算a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_485.html" target="_blank">第2篇工程应用篇a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_485.html" target="_blank">第13章用APDL实现空间网壳结构参数化建模a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_485.html" target="_blank">13.1 K系列球面网壳结构的特点和建模a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_485.html" target="_blank">13.1.1 K系列球面网壳的特点a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_486.html" target="_blank">13.1.2几何描述a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_486.html" target="_blank">13.1.3杆件连接关系a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_486.html" target="_blank">13.2参数化设计语言APDL介绍a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_487.html" target="_blank">13.2.1参数和表达式a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_487.html" target="_blank">13.2.2 ANSYS 中的基本指令a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_488.html" target="_blank">13.2.3分支和循环a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_490.html" target="_blank">13.3用户界面设计语言UIDL介绍a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_490.html" target="_blank">13.3.1 单行参数输入a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_490.html" target="_blank">13.3.2多行参数输入a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_491.html" target="_blank">13.4网壳建模程序设计a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_491.html" target="_blank">13.4.1模型建立的步骤a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_491.html" target="_blank">13.4.2节点坐标计算a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_493.html" target="_blank">13.4.3单元连接a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_494.html" target="_blank">13.4.4变量说明a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_494.html" target="_blank">13.4.5节点坐标计算公式a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_495.html" target="_blank">13.4.6主框图说明a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_495.html" target="_blank">13.4.7单元连接关系定义a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_496.html" target="_blank">13.4.8源程序a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_499.html" target="_blank">13.5程序使用说明a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_499.html" target="_blank">13.5.1加载程序a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_499.html" target="_blank">13.5.2界面说明a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_501.html" target="_blank">13.5.3注意事项a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_501.html" target="_blank">13.6应用举例a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_501.html" target="_blank">13.6.1基本参数a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_501.html" target="_blank">13.6.2输入数据并生成模型a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_502.html" target="_blank">13.6.3输入单元参数和荷载后开始计算a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_502.html" target="_blank">13.6.4选择结果输出方式a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_503.html" target="_blank">第14章塔式起重机静动力分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_503.html" target="_blank">14.1塔式起重机基本概念a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_503.html" target="_blank">14.2塔式起重机拓扑模型a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_505.html" target="_blank">14.3塔机模型受力分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_506.html" target="_blank">14.3.1部件受力特征分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_506.html" target="_blank">14.3.2截面参数定义a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_506.html" target="_blank">14.3.3自重荷载和配重a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_506.html" target="_blank">14.3.4选用合适的分析模型。a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_507.html" target="_blank">14.3.5 固定塔身底部的4个节点a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_507.html" target="_blank">14.4塔机建模程序设计a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_507.html" target="_blank">14.4.1塔身节点计算和单元连接a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_508.html" target="_blank">14.4.2塔顶建模a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_508.html" target="_blank">14.4.3塔臂建模a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_509.html" target="_blank">14.4.4平衡臂和斜拉索建模a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_510.html" target="_blank">14.5塔机静力分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_516.html" target="_blank">14.6塔机模态分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_519.html" target="_blank">14.7塔机静动力分析程序a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_536.html" target="_blank">第15章长柱形天然气罐在内压作用下的静力分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_536.html" target="_blank">15.1概述a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_536.html" target="_blank">15.2建立模型a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_537.html" target="_blank">15.3利用轴对称壳单元SHELL51计算a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_537.html" target="_blank">15.3.1单元基本性质和约定a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_539.html" target="_blank">15.3.2求解过程a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_542.html" target="_blank">15.3.3源程序a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_544.html" target="_blank">15.3.4计算结果a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_546.html" target="_blank">15.3.5简体部分理论解a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_546.html" target="_blank">15.3.6结果讨论a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_550.html" target="_blank">15.4利用8节点2D实体单元PLANE82单元计算a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_551.html" target="_blank">15.4.1建立模型a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_551.html" target="_blank">15.4.2计算过程a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_558.html" target="_blank">15.4.3计算结果及讨论a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_559.html" target="_blank">15.4.4源程序a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_560.html" target="_blank">15.5用20节点3D实体单元solid95计算1/4模型a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_560.html" target="_blank">15.5.1建立1/4三维模型a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_561.html" target="_blank">15.5.2计算步骤a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_567.html" target="_blank">15.5.3计算结果分析a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_570.html" target="_blank">15.5.4与弹性力学解答的对比a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_571.html" target="_blank">15.5.5计算程序a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_573.html" target="_blank">附录a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_573.html" target="_blank">附录A用结构单元参考a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_606.html" target="_blank">附录B结构分析命令速查a>p><p><a href="http://book.chaoxing.com/ebook/read_11266067_647.html" target="_blank">参考文献a>p>

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Early glasses (about 1066 BC-220 AD) unearthed from Xinjiang of China were chemically characterized by using PIXE and ICP-AES. It was found that these glasses were basically attributed to PbO-BaO-SiO2 system, K2O-SiO2 system, Na2O-CaO-SiO2 system and Na2O-CaO-PbO-SiO2 system. The results from the cluster analysis showed that some glasses had basically similar recipe and technology. The PbO-BaO-SiO2 glass and the K2O-SiO2 glass were thought to come from the central area and the south of ancient China, respectively. The part of the Na2O-CaO-SiO2 glass (including the Na2O-CaO-PbO-SiO2 glass) might be imported from Mesopotamia, while the other part might be locally produced. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microvoid arrays were self-organized when femtosecond laser beam was tightly focused at a fixed point inside CaF2 crystal sample. Except void array grown below the focal point which had been reported before, we found another void array grown vertical to the laser propagation direction. This result has potential application in the fabrication of integrated micro-optic elements and photonic crystals. The possible mechanism of the phenomenon was proposed and verified experimentally.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用水平式淀粉凝胶电泳技术,对云南盐津乌鸡34只个体共计34个基因座位的血液蛋白及同工酶多态性进行研究,发现LAPAKP-1、AKP-2、CKs-1、PEP-B 5个座位具有多态性,多态座位百分比和平均杂合度分别为P=0.1470,H=0.0586。对多态座位基因频率进行计算发现盐津乌鸡LAP~(B)、aKP-1、AKP-2、CEs-1~(A)PEP-B~(A)频率较高。结果表明,云南盐津乌鸡遗传多样性程度较常见的外国鸡种高,且具有独特基因型,属选育程度低,选择潜力大的地方品种,具有较高的保种价值。