16 resultados para Autosomal STRs

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Forty chromosome-specific paint probes of the domestic dog (Canis familiaris, 2n = 78) were used to delineate conserved segments on metaphase chromosomes of the American mink (Mustela vison, 2n = 30) by fluorescence in situ hybridisation. Half of the 38 canine autosomal probes each painted one pair of homologous segments in a diploid mink metaphase, whereas the other 19 dog probes each painted from two to five pairs of discrete segments. In total, 38 canine autosomal paints highlighted 71 pairs of conserved segments in the mink. These painting results allow us to establish a complete comparative chromosome map between the American mink and domestic dog. This map demonstrates that extensive chromosome rearrangements differentiate the karyotypes of the dog and American mink. The 38 dog autosomes could be reconstructed from the 14 autosomes of the American mink through at least 47 fissions, 25 chromosome fusions, and six inversions. Furthermore, comparison of the current dog/mink map with the published human/dog map discloses 23 cryptic intrachromosomal rearrangements in 10 regions of conserved synteny in the human and American mink genomes and thus further refined the human/mink comparative genome map. Copyright (C) 2000 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have made a set of chromosome-specific painting probes for the American mink by degenerate oligonucleotide primed-PCR (DOP-PCR) amplification of flow-sorted chromosomes. The painting probes were used to delimit homologous chromosomal segments among human, red fox, dog, cat and eight species of the family Mustelidae, including the European mink, steppe and forest polecats, least weasel, mountain weasel, Japanese sable, striped polecat, and badger. Based on the results of chromosome painting and G-banding, comparative maps between these species have been established. The integrated map demonstrates a high level of karyotype conservation among mustelid species. Comparative analysis of the conserved chromosomal segments among mustelids and outgroup species revealed 18 putative ancestral autosomal segments that probably represent the ancestral chromosomes, or chromosome arms, in the karyotype of the most recent ancestor of the family Mustelidae. The proposed 2n = 38 ancestral Mustelidae karyotype appears to have been retained in some modern mustelids, e.g., Martes, Lutra, ktonyx, and Vormela. The derivation of the mustelid karyotypes from the putative ancestral state resulted from centric fusions, fissions, the addition of heterochromatic arms, and occasional pericentric inversions. Our results confirm many of the evolutionary conclusions suggested by other data and strengthen the topology of the carnivore phylogenetic tree through the inclusion of genome-wide chromosome rearrangements. Copyright (C) 2002 S. KargerAG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Complete sets of chromosome-specific painting probes, derived from flow-sorted chromosomes of human (HSA), Equus caballus (ECA) and Equus burchelli (EBU) were used to delineate conserved chromosomal segments between human and Equits burchelli, and among four equid species, E. przewalskii (EPR), E. caballus, E. burchelli and E. zebra hartmannae (EZH) by cross-species chromosome painting. Genome-wide comparative maps between these species have been established. Twenty-two human autosomal probes revealed 48 conserved segments in E. burchelli. The adjacent segment combinations HSA3/21, 7/16p, 16q/19q, 14/15, 12/22 and 4/8, presumed ancestral syntenies for all eutherian mammals, were also found conserved in E. burchelli. The comparative maps of equids allow for the unequivocal characterization of chromosomal rearrangements that differentiate the karyotypes of these equid species. The karyotypes of E. przewalskii and E. caballus differ by one Robertsonian translocation (ECA5 = EPR23 + EPR24); numerous Robertsonian translocations and tandem fusions and several inversions account for the karyotypic differences between the horses and zebras. Our results shed new light on the karyotypic evolution of Equidae. Copyright (C) 2003 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conserved chromosomal segments in the black rhinoceros, Diceros bicornis (DB1, 2n = 84), and its African sister-species the white rhinoceros, Ceratotherim simum (CSI, 2n = 82), were detected using Burchell's zebra (Equus burchellii, EBU, 2n = 44) chromosome-specific painting probes supplemented by a subset of those developed for the horse (Equus caballus, ECA, 2n = 64). In total 41 and 42 conserved autosomal segments were identified in C simum and D. bicornis respectively. Only 21 rearrangements (20 fissions and I fusion) are necessary to convert the Burchell's zebra karyotype into that of the white rhinoceros. One fission distinguishes the D. bicornis and C simum karyotypes which, excluding hetero- chromatic differences, are identical in all respects at this level of resolution. Most Burchell's zebra chromosomes correspond to two rhinoceros chromosomes although in four instances (EBU 18, 19, 20 and 21) whole chromosome synteny has been retained among these species. In contrast, one rhinoceros chromosome (DBI1, CSI1) comprises two separate Burchell's zebra chromosomes (EBU11 and EBU17). In spite of the high diploid numbers of the two rhinoceros species their karyotypes are surprisingly conserved offering a glimpse of the putative ancestral perissodactyl condition and a broader understanding of genome organization in mammals. Copyright (C) 2003 S. Karger AG, Base

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cross-species chromosome painting with probes derived from flow-sorted dog and human chromosomes was used to construct a high-resolution comparative map for the pig. In total 98 conserved autosomal segments between pig and dog were detected by probes specific for the 38 autosomes and X Chromosome of the dog. Further integration of our results with the published human-dog and cat-dog comparative maps, and with data from comparative gene mapping, increases the resolution of the current pig-human comparative map. It allows for the conserved syntenies detected in the pig, human, and cat to be aligned against the putative ancestral karyotype of eutherian mammals and for the history of karyotype evolution of the pig lineage to be reconstructed. Fifteen fusions, 17 fissions, and 23 inversions are required to convert the ancestral mammalian karyotype into the extant karyotype of the pig.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chromosomal homologies have been established between the Chinese muntjac (Muntiacus reevesi, MRE, 2n = 46) and five ovine species: wild goat (Capra aegagrus, CAE, 2n = 60), argall (Ovis ammon, OAM, 2n = 56), snow sheep (Ovis nivicola, ONI, 2n = 52), red goral (Naemorhedus cranbrooki, NCR, 2n = 56) and Sumatra serow (Capricornis sumatraensis, CSU, 2n = 48) by chromosome painting with a set of chromosome-specific probes of the Chinese muntjac. In total, twenty-two Chinese muntjac autosomal painting probes detected thirty-five homologous segments in the genome of each species. The chromosome X probe hybridized to the whole X chromosomes of all ovine species while the chromosome Y probe gave no signal. Our results demonstrate that almost all homologous segments defined by comparative painting show a high degree of conservation in G-banding patterns and that each speciation event is accompanied by specific chromosomal rearrangements. The combined analysis of our results and previous cytogenetic and molecular systematic results enables us to map the chromosomal rearrangements onto a phylogenetic tree, thus providing new insights into the karyotypic evolution of these species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Neurotrypsin is one of the extra-cellular serine proteases that are predominantly expressed in the brain and involved in neuronal development and function. Mutations in humans are associated with autosomal recessive non-syndromic mental retardation (MR). We studied the molecular evolution of neurotrypsin by sequencing the coding region of neurotrypsin in 11 representative non-human primate species covering great apes, lesser apes, Old World monkeys and New World monkeys. Our results demonstrated a strong functional constraint of neurotrypsin that was caused by strong purifying selection during primate evolution, an implication of an essential functional role of neurotrypsin in primate cognition. Further analysis indicated that the purifying selection was in fact acting on the SRCR domains of neurotrypsin, which mediate the binding activity of neurotrypsin to cell surface or extracellular proteins. In addition, by comparing primates with three other mammalian orders, we demonstrated that the absence of the first copy of the SRCR domain (exon 2 and 3) in mouse and rat was due to the deletion of this segment in the murine lineage. Copyright (C) 2005 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regional distribution of an ancient Y-chromosome haplogroup C-M130 (Hg C) in Asia provides an ideal tool of dissecting prehistoric migration events. We identified 465 Hg C individuals out of 4284 males from 140 East and Southeast Asian populations. We genotyped these Hg C individuals using 12 Y-chromosome biallelic markers and 8 commonly used Y-short tandem repeats (Y-STRs), and performed phylogeographic analysis in combination with the published data. The results show that most of the Hg C subhaplogroups have distinct geographical distribution and have undergone long-time isolation, although Hg C individuals are distributed widely across Eurasia. Furthermore, a general south-to-north and east-to-west cline of Y-STR diversity is observed with the highest diversity in Southeast Asia. The phylogeographic distribution pattern of Hg C supports a single coastal 'Out-of-Africa' route by way of the Indian subcontinent, which eventually led to the early settlement of modern humans in mainland Southeast Asia. The northward expansion of Hg C in East Asia started similar to 40 thousand of years ago (KYA) along the coastline of mainland China and reached Siberia similar to 15 KYA and finally made its way to the Americas. Journal of Human Genetics (2010) 55, 428-435; doi:10.1038/jhg.2010.40; published online 7 May 2010

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hybridization between yak Poephagus grunniens and taurine Bos taurus or indicine B. indicus cattle has been widely practiced throughout the yak geographical range, and gene flow is expected to have occurred between these species. To assess the impact of cattle admixture on domestic yak, we examined 1076 domestic yak from 29 populations collected in China, Bhutan, Nepal, India, Pakistan, Kyrgyzstan, Mongolia and Russia using mitochondrial DNA and 17 autosomal microsatellite loci. A cattle diagnostic marker-based analysis reveals cattle-specific mtDNA and/or autosomal microsatellite allele introgression in 127 yak individuals from 22 populations. The mean level of cattle admixture across the populations, calculated using allelic information at 17 autosomal microsatellite loci, remains relatively low (mY(cattle) = 2.66 +/- 0.53% and Q(cattle) = 0.69 +/- 2.58%), although it varies a lot across populations as well as among individuals within population. Although the level of cattle admixture shows a clear geographical structure, with higher levels of admixture in the Qinghai-Tibetan Plateau and Mongolian and Russian regions, and lower levels in the Himalayan and Pamir Plateau region, our results indicate that the level of cattle admixture is not significantly correlated with the altitude across geographical regions as well as within geographical region. Although yak-cattle hybridization is primarily driven to produce F-1 hybrids, our results show that the subsequent gene flow between yak and cattle took place and has affected contemporary genetic make-up of domestic yak. To protect yak genetic integrity, hybridization between yak and cattle should be tightly controlled.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Congenital microphthalmia is a developmental ocular disorder and might be caused by the mutations in the genes involved in eye development. To uncover the genetic cause in a six-generation Chinese pedigree with autosomal dominant congenital microphthalmia

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mutations in the long-range limb-specific cis-regulator (ZRS) could cause ectopic shh gene expression and are responsible for preaxial polydactyly (PPD). In this study, we analyzed a large Chinese isolated autosomal dominant PPD pedigree. By fine mapping

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the karyotypic relationships between Chinese muntjac (Muntiacus reevesi), forest musk deer (Moschus berezovskii) and gayal (Bos frontalis), a complete set of Chinese muntjac chromosome-specific painting probes has been assigned to G-banded chromosomes of these three species. Sixteen autosomal probes (i.e. 6-10, 12-22) of the Chinese muntjac each delineated one pair of conserved segments in the forest musk deer and gayal, respectively. The remaining six autosomal probes (1-5, and 11) each delineated two to five pairs of conserved segments. In total, the 22 autosomal painting probes of Chinese muntjac delineated 33 and 34 conserved chromosomal segments in the genomes of forest musk deer and gayal, respectively. The combined analysis of comparative chromosome painting and G-band comparison reveals that most interspecific homologous segments show a high degree of conservation in G-banding patterns. Eleven chromosome fissions and five chromosome fusions differentiate the karyotypes of Chinese muntjac and forest musk deer; twelve chromosome fissions and six fusions are required to convert the Chinese muntjac karyotype to that of gayal; one chromosome fission and one fusion separate the forest musk deer and gayal. The musk deer has retained a highly conserved karyotype that closely resembles the proposed ancestral pecoran karyotype but shares none of the rearrangements characteristic for the Cervidae and Bovidae. Our results substantiate that chromosomes 1-5 and 11 of Chinese muntjac originated through exclusive centromere-to-telomere fusions of ancestral acrocentric chromosomes. Copyright (C) 2005 S. Karger AG, Basel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Chinese long-tailed mole (Scaptonyx fusicaudus) closely resembles American (Neurotrichus gibbsii) and Japanese (Dymecodon pilirostris and Urotrichus talpoides) shrew moles in size, appearance, and ecological habits, yet it has traditionally been classified either together with (viz subfamily Urotrichinae) or separately (tribe Scaptonychini) from the latter genera (tribe Urotrichini sensu lato). We explored the merit of these competing hypotheses by comparing the differentially stained karyotypes of S.fusicaudus and N. gibbsii with those previously reported for both Japanese taxa. With few exceptions, diploid chromosome number (2n = 34), fundamental autosomal number (FNa = 64), relative size, and G-banding pattern of S. fusicaudus were indistinguishable from those of D. pilirostris and U. talpoides. In fact, only chromosome 15 differed significantly between these species, being acrocentric in D. pilirostris, subtelocentric in U. talpoides, and metacentric in S. fusicaudus. This striking similarity is difficult to envisage except in light of a shared common ancestry, and is indicative of an exceptionally low rate of chromosomal evolution among these genera. Conversely, the karyotype of N. gibbsii deviates markedly in diploid chromosome and fundamental autosomal number (2n = 38 and FNa = 72, respectively), morphology, and G-banding pattern from those of Scaptonyx and the Japanese shrew moles. These differences cannot be explained by simple chromosomal rearrangements, and Suggest that rapid chromosomal reorganization Occurred ill the karyotype evolution of this species, possibly due to founder or bottleneck events.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Flying lemurs or Colugos (order Dermoptera) represent an ancient mammalian lineage that contains only two extant species. Although molecular evidence strongly supports that the orders Dermoptera, Scandentia, Lagomorpha, Rodentia and Primates form a superordinal clade called Supraprimates (or Euarchontoglires), the phylogenetic placement of Dermoptera within Supraprimates remains ambiguous. Results: To search for cytogenetic signatures that could help to clarify the evolutionary affinities within this superordinal group, we have established a genome-wide comparative map between human and the Malayan flying lemur (Galeopterus variegatus) by reciprocal chromosome painting using both human and G. variegatus chromosome-specific probes. The 22 human autosomal paints and the X chromosome paint defined 44 homologous segments in the G. variegatus genome. A putative inversion on GVA 11 was revealed by the hybridization patterns of human chromosome probes 16 and 19. Fifteen associations of human chromosome segments (HSA) were detected in the G. variegatus genome: HSA1/3, 1/10, 2/21, 3/ 21, 4/8, 4/18, 7/15, 7/16, 7/19, 10/16, 12/22 (twice), 14/15, 16/19 (twice). Reverse painting of G. variegatus chromosome-specific paints onto human chromosomes confirmed the above results, and defined the origin of the homologous human chromosomal segments in these associations. In total, G. variegatus paints revealed 49 homologous chromosomal segments in the HSA genome. Conclusion: Comparative analysis of our map with published maps from representative species of other placental orders, including Scandentia, Primates, Lagomorpha and Rodentia, suggests a signature rearrangement (HSA2q/21 association) that links Scandentia and Dermoptera to one sister clade. Our results thus provide new evidence for the hypothesis that Scandentia and Dermoptera have a closer phylogenetic relationship to each other than either of them has to Primates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

现代人起源和史前迁移问题的遗传学研究是一个受到广泛关注的研究领 域。首先,它可以解答人类所关心的关于自身的起源以及我们祖先的史前活动问 题;其次,现代人祖先分开并扩散到世界各地,由于受到不同的外界环境和不同 的历史事件的影响,遗传上发生相应的变化,形成现有人群之间不仅在外表上存 在差异,同时在对疾病的易感性方面也存在差异。近年来的研究还发现,不同人 群之间在对药物的反应上也存在差异。 因此,人群起源与史前迁移研究对生物 医学研究也至关重要。目前,世界各地人群的起源和史前迁移问题的研究已经取 得很多进展,东亚之外的其它各个地区现有人群的起源和迁移已经相当清楚,东 亚现代人的起源对完整回答现代人的起源问题至关重要。 东亚现代人史前早期迁移的问题还存在很大争议,对现有研究结果的解释 甚至存在冲突。通过对东亚地区现有人群展开系统采样,并对东亚特有的Y 单 倍型遗传标记进行扫描,以东亚现代人特有的单倍型组O3-M122 下的各个特征 位点为遗传标记,我们对来自东亚地区的2332 份男性样本进行了研究。结果发 现,O3-M122 单倍型组为东亚现代人群的主导单倍型,其平均频率是44.3%。 以SNPs 突变特征为背景,展开SNPs-STRs 相结合的研究,通过大量的分析和统 计检验,从STRs 数据上可以看出东亚现代人南部人群的O3-M122 单倍型组的 多样性比北方人群高。这一证据揭示出东亚现代人特有单倍型O3-M122 突变为 东亚南部起源,然后随着东亚现代人早期的由南向北迁移活动而扩散到北方。利 用SNPs-STRs 相结合的遗传学分析手段,推导出东亚特有单倍型组O3-M122 伴 随人群由南向北的早期迁移事件发生于距今约25000~30000 年以前,这一结论 与东亚现代人的化石证据推断的结论相一致。O3-M122 单倍型组的史前早期迁 移事件有助于从遗传学角度透视东亚现代人早期迁移的路线和起源问题。 东亚地区现代人史前迁移活动遗留下神秘的悬棺文化一直令人费解,考古学的推论存在很大争议。我们利用遗传学手段对现存悬棺文化的保留人群展开研 究,采用父系和母系遗传标记相结合的方法探讨悬棺文化的传播人群的族源。从 遗传上看,悬棺葬俗的拥有人群不论从母系还是父系遗传学证据都为典型的东亚 南方人群。 为最终解决东亚现代人起源和史前迁移问题,我们对考古发掘出来的东亚 地区现代人化石展开古DNA(ancient DNA, aDNA)研究。目前,aDNA 分析的 技术和手段已经建立并逐步成熟,并且积累了一定量的东亚现代人的aDNA 数 据,这一研究还在继续。aDNA 最终会为解答东亚现代人起源和史前迁移问题提 供强有力的遗传学证据。