8 resultados para Austrian Succession, War of, 1740-1748.

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to imitate the restoration succession process of natural water ecosystem, a laboratory microcosm system of constant-flow-restoration was designed and established. A eutrophycation lake, Lake Donghu, was selected as the subject investigated. Six sampling stations were set on the lake, among which the water of station IV was natural clean water, and others were polluted with different degrees. Polyurethane foam unit microbial communities, which had colonized in the stations for a month, were collected from these stations and placed in their respective microcosms, using clean water of station IV to gradually replace the water of these microcosms. In this process, the healthy community in clean water continuously replaced the damaged communities in polluted water, the restoration succession of the damaged communities was characterized by weekly determination of several functional and structural community parameters, including species number (S), diversity index (DI), community pollution value (CPV), heterotrophy index (HI), and similarity coefficient. Cluster analysis based on similarity coefficient was used to compare the succession discrepancies of these microbial communities from different stations. The ecological succession of microbial communities during restoration was investigated by the variable patterns of these parameters, and based on which, the restoration standards of these polluted stations were suggested in an ecological sense. That was, while being restored, the water of station 0 (supereutrophycation) should be substituted with natural clean water by 95%; station I (eutrophycation), more than 90%; station II (eutrophycation), more than 85%; station III (eutrophycation), about 85%; station V (mesoetitrophycation), less than 50%. The effects of the structural and functional parameters in monitoring and assessing ecological restoration are analyzed and compared. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Zinc(II)-2-(2-hydroxyphenyl)benzothiazolate complex is an excellent white-light-emitting material. Despite some studies devoted to this complex, no information on the real origin of the unusually broad electroluminescent (EL) emission is available. Therefore, we investigate photoluminescent and EL properties of the zinc complex. Orange phosphorescent emission at 580 nm was observed for the complex in thin film at 77 K, whereas only fluorescent emission was obtained at room temperature. Molecular orbitals, excitation energy, and emission energy of the complex were investigated using quantum chemical calculations. We fabricated the device with a structure of ITO/F16CuPc(5.5 nm)/Zn-complex/Al, where F16CuPc is hexadecafluoro copper phthalocyanine. The EL spectra varied strongly with the thickness of the emissive layer. We observed a significant change in the emission spectra with the viewing angles. Optical interference effects and light emission originating both from fluorescence and from phosphorescence can explain all of the observed phenomena, resulting in the broad light emission for the devices based on the Zn complex. We calculated the charge transfer integral and the reorganization energy to explain why the Zn complex is a better electron transporter than a hole transporter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

通过野外测定和控制实验结果发现: 在成林内林窗能促进发芽率、幼苗存活率和光合作用等。高光下,会发生多次生长。幼苗干物质积累与光照明显正相关。生长速度与存活无相关,但对第二年存活有影响。基径可作为光反应的无损伤测定指标。直射光和散射光对幼苗生长影响不同。 适当厚度的枯落物覆盖促进种子发芽和补充更新,埋藏太深则对辽东栎幼苗的生长、生理和存活等有抑制。灌木和树木的冠层对辽东栎在灌丛中的建立。 模拟实验表明完全去叶可导致16.7%的幼苗死亡,完全去除子叶可导致50%幼苗死亡,都严重影响幼苗的生理过程和干物质积累。土壤养分和干旱对辽东栎幼苗生长和光合也有很大影响。 运用通径分析精确测定,结果发现辽东栎冠层不同位置的叶片气体交换的限制因子有很大的差别。上层叶主要是气孔导度影响,叶温是通过饱和蒸汽压(VPD)有间接负作用。冠层下方光照的不足的限制,叶温有促进光合作用。不同部位叶片光合作用对气孔导度的依赖程度不同。 在辽东栎林演替过程中,生理生态变化趋势明显。根据所测的20多个生理指标,可将主要物种划分成不同的功能群。早期种具有较高的光合速率,气孔导度, 蒸腾速率和抗旱性, 而辽东栎和棘皮桦单独为一类。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

在内蒙古典型草原农牧交错区多伦县境内,进行了土地利用历史和管理对群落结构演变影响的研究。探讨了模拟降雨和添加N、P对草地群落结构的单因子效应和互作效应。土地利用历史选择了围封禁牧和弃耕两种。弃耕地的弃耕历史为4年,围封禁牧分别为围封1年和围封4年。研究在2005年进行了一年,主要研究结果如下: 1. 在内蒙古典型草原地区,土地利用历史对物种丰富度、植被盖度的影响不大,但对物种分布均度、植被高度影响显著。弃耕地的物种分布均质性较差,但植被高度高于围封草地。弃耕地的物种多样性指数、枯落物覆盖度低于围封草地,围封草地中围封4年的又低于围封1年。 2. 增雨对内蒙古典型草原群落的物种丰富度无显著影响,但利于植被盖度和植被高度的增加。增雨也使得群落的枯落物覆盖度和空地覆盖比例下降。在获得水分的条件下豆科植物的扩张速度快于禾本科植物,表现出了群落结构分异的趋势。 3. 添加N素和P素没有引起群落物种丰富度的明显变化,但添加N素利于物种数目增加。添加N素还使得草地植被盖度增加、枯落物覆盖度和空地覆盖比例下降,但添加P素没有产生类似的效果。添加5g/m2 以上的N就会引起内蒙古典型草原枯落物覆盖度的显著降低。添加N素后,禾本科植物盖度增加,但豆科植物响应不强烈;添加P素后,豆科植物盖度增势明显。因此,豆科植物对P素反应敏感,而对N素渴求不强烈。 4. 水、N、P交互对物种丰富度和植被高度影响都不大,但都有促使植被盖度增加、枯落物覆盖度和空地覆盖比例下降的趋势。水、N、P交互还使得禾本科盖度增加,但除水、P交互外,各交互组合对豆科植物盖度的影响都不大明显。 综上所述,土地利用方式和管理是内蒙古典型草原群落结构演变的重要驱动力。在当今人类活动日益加剧的形势下,天然植被受人为的干扰越来越大。如何保护内蒙古典型草原的植被,是许多研究者共同肩负的重任。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

用4年长期定位试验资料,利用植物系数、蒸散量、土壤含水量和土壤水分对植物的有效性等指标,研究了黄土高原植被群落不同演替阶段(草本群落→灌木群落→早期森林群落→顶级群落)的耗水特性与生态适应性。结果表明:不同演替阶段,群落实际蒸散量主要受降水控制,群落间差异不显著(P>0.05);土壤含水量是早期森林群落明显高于其它群落,草本群落明显高于灌木群落(P<0.05);植物系数是灌木群落>草本群落>乔木群落,而顶级群落大于早期森林群落;土壤水分对植物的有效性是早期森林和顶级群落明显高于草本和灌木群落(P<0.05)。因此,进行植被建设不但要考虑植物系数还要考虑土壤水分对不同植物的有效性。

Relevância:

100.00% 100.00%

Publicador:

Resumo:

当前大气CO2浓度升高是全球变化的主要趋势之一,CO2浓度升高还会引起全球变暖等其它环境问题,因而CO2浓度浓度升高对植物影响的研究已经成为全球变化领域的焦点。红桦是川西亚高山地区暗针叶林演替初期的先锋树种和演替后期的建群种,在群落演替过程中它对环境因子的响应决定红桦群落的演替进程。本文通过控制CO2浓度的气候室试验,研究了CO2浓度倍增环境下,不同密度水平红桦碳氮固定、分配可能发生的改变,并探讨了升高大气CO2浓度对群体内部竞争的影响。以期通过本研究明确川西亚高山地区代表性物种红桦对未来气候变化的响应,为今后采取措施应对气候变化、妥善进行森林管理提供理论依据和科学指导。主要研究结果如下: 1.升高CO2浓度对红桦幼苗生长的影响以及树皮、树干响应的不同 (1) CO2浓度升高显著促进红桦幼苗的生物量、株高、基茎的生长,同时也改变生物量在体内的分配格局,主要是增加根和主茎、减少叶在总生物量中的比重。(2)树皮和树干对升高CO2浓度的影响有差异,它们对CO2浓度升高的反应程度不同,但反应方向一致。 2.密度的副效应 (1) 增加种植密度对单株生物量、株高和基径的生长具有副效应,也降低升高CO2浓度对红桦生长的正效应。(2) 增加种植密度,显著增加红桦幼苗的群体生物量,从而使红桦群体固定更多的大气CO2气体。可见密度在决定红桦生物量及固碳能力方面具有重要意义。探索适合未来大气CO2浓度升高条件下植物生长的密度,对未来的森林经济生产、生态恢复具有重要意义。 3. 升高CO2浓度对红桦幼苗苗冠结构及冠层内部竞争的影响 (1) 冠幅、冠高、苗冠表面积和苗冠体积等树冠特征均受CO2浓度升高的影响而增加,但是受密度增加的影响而降低。(2) 单位苗冠投影面积叶片数(LDcpa)和单位苗冠体积叶片数(LDcv)均低于相应的现行CO2浓度处理,这主要是由于冠幅和冠高的快速生长所造成的。(3) LDcpa和LDcv的降低表明,红桦在升高CO2浓度的条件下,会作出积极的响应,从而缓解由于群体和个体生长的增加所引起的竞争压力的增加。 4. 升高CO2浓度对红桦幼苗养分元素吸收与分配的影响 (1) CO2浓度升高,植株各器官N、P含量降低,但单株N、P总吸收量均增加。红桦幼苗体内N、P浓度的下降是由于生物量迅速增加引起的稀释效应造成的。(2) CO2浓度升高,N、P向主茎和根的分配增加,向叶片的分配减少,主要是由于前者在总生物量中的比重增加,而后者减少了。(3) CO2浓度升高,氮磷利用效率(NUE和PUE)提高,氮磷累积速率(NAcR和PAcR)显著增加。而NUE和PUE的提高可以有效缓解CO2浓度升高后,亚高山和高山地区森林土壤中养分元素不足对森林生产力的限制。 5. 升高CO2浓度对红桦幼苗群体碳平衡的影响 (1) 升高CO2浓度对植物的光合作用、呼吸速率和生长均具有促进作用。(2) 土壤有机碳含量在实验前期迅速增加,后期积累速率下降。(3) 升高CO2浓度以后,土壤呼吸显著增强;土壤呼吸还具有明显的季节变化。(4) 红桦群体日固碳量受到升高CO2浓度的促进作用。结果(1)-(4)说明所研究群落的碳动态对现行的气候波动是敏感的;所研究群落在作为大气CO2气体的源-汇关系方面至少存在季节间的源汇飘移。(5)种植密度的升高显著增加了群体固碳量。 6. 升高CO2浓度对红桦幼苗生长后期叶片衰老的影响 升高CO2浓度有利于减缓红桦幼苗叶片生长季节末期的衰老。生长季节末期,随着CO2浓度的升高光合速率和可溶性蛋白含量均呈上升趋势,同时MDA(丙二醛)含量下降,保护酶SOD(超氧化物岐化酶)、CAT(过氧化氢酶)活性升高。由此说明,升高CO2浓度有利于减缓生长季节后期叶片的衰老,使叶片维持较高的光合速率,也从生理学的角度支持了本文及前人有关CO2浓度升高促进植物光合和生长的假说及结果。 The increased CO2 concentration is one of the most important problems among global changes. The increase of CO2 will also cause other environmental problems, such as global warming, etc. So the effects of elevated CO2 on plant have drawn sights of many scientists in the research field of global change. Red birch (Betula albosinensis) usually emerges as the pioneer species in initial stage and as constructive species in later stages of forest community succession of the dark coniferous forests in Western Sichuan, China. It’s response to elevated CO2 may determine the succession process of the community where it lives in. By controlling CO2 at the ambient and twice as the ambient level (ambient + 350 umol mol-1) using enclosed-top chambers (ETC), possible effects of elevated CO2 on carbon fixation and allocation under two plantation densities are investigated. The effects of elevated CO2 on competition within canopy of red birch seedlings are also observed in the present paper. We hope to make sure of the effects of elevated CO2 on the representative species, red birch. And so that, our results could provide a strong theoretical evidence and scientific direction for forest management and afforestation under a future, CO2 elevated world. The results are as fowllows: 1. The effects of elevated CO2 on growth and the different responses of wood and bark of red birch seedlings (1) Elevated CO2 increases the growth of seedling biomass, seedling height and basal diameter of red birch. It also changed the biomass allocation in red birch seedlings. The ratio of root and main stem to all biomass is increased and the ratio of leaf is decreased. (2) Tree bark and wood show different response degree but similar response direction to elevated CO2. 2. Negative effects of planting density (1) The increase of planting density showes negative effects on the individual growth of seedling biomass, seedling height and basal diameter of red birch. It also eliminates the positive effects of elevated CO2 on growth of red birch seedlings. (2) Community biomass is increased by the elevated planting density, which means that the high density red birch community could fix more CO2 than the low density one. These results show that planting density plays an important role in determining biomass and carbon fixation ability of red birch community. Thus, exploring proper planting density becomes economically important for the future, CO2 elevated word. 3. The effects of elevated CO2 on crown architecture and competition within canopy of red birch seedlings (1) Crown width, crown depth, crown surface area and crown volume are all increased under the influence of elevated CO2. (2) Leaf number per unit area of projected crown area (LDcpa) and per unit volume of crown volume (LDcv) are lower under elevated CO2. This is resulted from the stimulated growth of tree crown features. (3) The decrease of LDcpa and LDcv indicate that plants will respond forwardly to reduce the possible increase of competition resulted from stimulated growth of individual plant and collectives in conditions of elevated CO2. 4. The effects of elevated CO2 on nutrition accumulation and allocation of red birch seedlings (1) Contents of N and P decrease due to the prompt increase of biomass of plant organs caused by elevated CO2. However, their accumulations increase under elevated CO2. (2) Elevated CO2 increases the allocation of N, P to main stem but reduced its allocation to leaf for that dry weight of the former increased but the dry weight of the later decreased. (3) Using efficiencies of N, P (NUE and PUE) and their accumulation rates (NAcR and PAcR) are found to increase under elevated CO2. Soil nutrition contents are always the limiting factors for plant growth at subalpine and alpine region. The increased NUE and PUE are helpful to eliminate the nutrition limitation in this area in the future world, when CO2 concentration doubles the ambient. 5. The effects of elevated CO2 on carbon balance of red birch communities (1) Net photosynthetic rates (Pn), dark respiration rates (Rd) and growth are all stimulated by elevated CO2. (2) Content soil organic carbon increases sharply at the primary stage of experiments and then the increasing rates decrease to a low level at later stages. (3) Soil respiration rates increase significantly with the elevation of CO2 concentration. (4) The daily carbon fixations of whole community are heightened by elevated CO2. The results (1)-(4) suggest that, the community being studied are sensitive to current climate change; the studied community, as a sink of atmospheric CO2, is pool-sink alternative between seasons. (5) The carbon fixations are increased along the increase of planting densities. 6. The effects of elevated CO2 on physiological features of leaf senescences of red birch seedlings at the later stage of growing season Elevated CO2 helps to postpone the leaf senescences of red birch at the end of the growth season. CO2 enrichment increases the photosynthetic rates, contents of soluble proteins and photosynthetic pigments. And meanwhile contents of malondialdehyde (MDA) decreases and activities of superoxide dismutase (SOD) and catalase (CAT) are both increased. These results suggest that the senescences of red birch leaves are delayed by elevated CO2, which keep the photosynthetic rates at relatively high levels. Our results lend supports to hypothesis and results on stimulated photosynthetic rates and growth from both other researchers and the present paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

在青藏高原东部的亚高山针叶林区,如何尽快恢复这一生态脆弱地区的植被,改变生态环境恶化的趋势,是一个十分重要的课题。光一直被认为是植物种间相互替代,尤其是森林演替过程中植物相互替代或植被恢复中的关键环境要素之一。植物能否适应林冠下或林窗中异质的、或多变的光照条件,对其在林中的生存、分布、更新以及森林动态都是非常重要的。 本文以青藏高原东部亚高山针叶林的主要森林类型——岷江冷杉林群落的几种树苗为研究对象,采用实验生态学、生理及生物化学等方法,通过模拟针叶林不同大小林窗内光照强度的变化,在中国科学院茂县生态站内采用遮荫处理设置6个光照梯度(100、55、40、25、15与7%全光照),来研究具有不同喜光特性的植物对光强的响应与适应机制,其研究结果可为揭示亚高山针叶林的演替规律、以及人工林下幼苗的存活与定居提供科学依据,也能为苗木的生产与管理提供科学指导,尤其是对针阔树种在不同光强下的响应与适应的比较研究,能为如何将阔叶树种整合到人工针叶林中提供新的思路。 光强对植物生长的影响 光强对植物的生长具有重要作用,不同植物在各自适宜的光强梯度下才能生长良好。通过一个野外盆栽实验,来研究不同光强对植物生长的影响(第三章)。主要研究结果如下,低光强下植物株高/茎生物量增加,说明植物会将生物量更多用于高生长,以便有效地拦截光资源;在强光下,植物将生物量更多地向根部分配,使得植物在强光下能够吸收更多的水分,而避免干旱胁迫。 在第一个生长季节,以相对生长速率(RGR)表示,红桦和青榨槭在100%全光照下RGR最大,粗枝云杉在55%最大,岷江冷杉在25-40%下较好;然而,在第二个生长季节,2种阔叶树的相对生长速率(RGR)的适宜光强则变为25-55%,云杉为55-100%,而冷杉为25-100%。可见,从第一年到第二年,2种阔叶树苗更适宜在部分荫蔽的条件下生长;而2种针叶树苗对光的需求则逐渐增加,这可能是增加对根生物量相对投资的结果,因为以这种方式,强光下生长的针叶树幼苗更能保持其内部水分平衡,其生长不会因干旱胁迫而受到严重影响。另外,严重遮荫会引起冷杉幼苗死亡。 植物对光强的生理适应 植物可以通过自身形态和生理特征的调整,来发展不同的光能利用策略从而能够在林中共存。通过一个野外盆栽实验,研究了不同光强下生长的几种树苗的生理特征(第四章)对不同光强的响应与适应。结果显示:强光下,粗枝云杉和红桦的光合能力增加,而岷江冷杉和青榨槭在中度遮荫(25-55%)的条件下光合能力最大。植物叶氮和叶绿素含量增高,而光补偿点和暗呼吸速率降低,这些都是植物对低光环境的适应性反应;而强光下植物叶片和栅栏组织变厚,是对强光的一种保护性反应。 植物对光的可塑性反应 不同植物会表现出对光适应有利的生理和形态可塑性反应。本文对第三章、第四章的实验数据进行可塑性指数分析,来研究植物对光强的表型可塑性反应(第五章)。结果显示,生理特征调整是植物对不同光环境的主要适应途径。红桦和青榨槭的可塑性指数平均值要大于粗枝云杉和岷江冷杉,充分表明这2种阔叶树在生理和形态上较强的可塑性更有利于对光环境的适应,而具有比耐荫树种更强的适应能力。另外,2种针叶树相比,云杉的适应性更强。本研究结果支持树种的生理生态特性决定了其演替状况和生境选择的假说。 植物的光抑制与防御 当植物叶片吸收了过多光能,会发生光抑制现象。植物对光抑制的敏感性及防御能力对其生长具有重要意义。本文通过两个野外盆栽实验,研究了生长在强光下(第六章)和变化光强下(第八章)植物的光抑制现象及其防御策略。结果表明,在强光下或从遮荫状态转入强光下,植物都会发生光抑制,其对光抑制的敏感性与植物的耐荫性(或喜光)和演替状态有密切联系。长期生长在强光下的植物受到光抑制是可恢复的,而当处于荫蔽环境的植物突然暴露于强光下时,受到的光抑制不能完全恢复,可能是(部分)光合机构受到破坏的缘故。粗枝云杉和青榨槭防御光抑制伤害的能力较强,热耗散是其防御光抑制的主要途径。长期的强光作用能使岷江冷杉和红桦发生严重光抑制,甚至光伤害,而红桦能够通过“凋落老叶,萌发新叶”的途径来适应新的强光环境。 How to restore the vegetation of subalpine coniferous forest in eastern Qinghai-Tibet Plateau, and change the trend of ecological deterioration is a very important issue. Acclimation of tree seedlings to different and varing light environment affects to a great extent the successful regeneration and establishment of subalpine coniferous forests in southwestern China’s montane forest areas, because the ability to respond to such changing resource are commonly assumed to be critical to plant success, and have a growth advantage than others. In this paper, several species seedlings in Abies faxoniana community were chosed to study the response and adaptation to light intensity and the interspecific differences of adaptability in six shaded sheds (100, 55, 40, 25, 15 and 7% of full sunlight) in the Maoxian Ecological Station of Chinese Academy of Sciences. Our results could provide a strong theoretical evidence for understanding the forest succession laws of subalpine coniferous forests, and the survival and settlement of seedlings under plantations, and provide scientific direction for the production and management of seedlings, especially the comparative studies of the acclimation to light between the conifer and broadleaf trees could provide new ideas for how to integrate the broad-leaved trees into the artificial coniferous forest. Growth under different light intensity Light intensity plays an important role on plant growth. One field experiments was conducted to study the growth of tree seedlings of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii under different light intensities. The results showed that plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources, while biomass greater allocation to the roots, could make plants under high light environment absorb more water, and avoid drought stress. During the first growing season, the relative growth rates (RGRs) of Betula albo-sinensis and Acer davidii had the greatest values under the 100% of full light, for 55% of Picea asperata, and for 25-40% of Abies faxoniana. However, in the second growing season the the relative growth rates of the two broad-leaved trees changed and were appropriate for 25-55% of full light, for 55-100% of spruce, and for 25-100% of fir. Thus, from the first year to the second year, two broad-leaved seedlings maybe more suitable to partly shading environment, and two coniferous seedlings would have an increase in light demand, which may be an increased root biomass investment. Because in this way, seedlings grown under high light could better maintain their internal water balance, and thus its growth would not be seriously affected by drought stress. In addition, serious shading would cause fir seedlings to die. Acclimation of physiology to light Plants could coexist in forest ecosystem by forming different strategies of light use. One field experiments was conducted to study the acclimation of tree seedlings to different light intensity of Picea asperata, Abies faxoniana, Betula albo-sinensis and Acer davidii. The results showed that the photosynthetic capacity of Picea asperata and Betula albo-sinensis exhibited a general tendency of increase with more light availability; but for Abies faxoniana and Acer davidii seedlings, their highest values of the same parameters were found under intermediate light regime (i.e. 25-55% of PFD relative to full sunlight). Plants under low light environment could increase the specific stem length (stem length/ stem dry mass), in order to effectively intercept light resources. Leaf nitrogen and chlorophyll content increased, while dark respiration rate and light compensation points decreased, all of which were adaptive response to the low light environment. On the contrary, plants under high light environment had the thicken leaves and palisade tissue, which was a protective response to high light. Phenotypic plasticity to light Phenotypic plasticity can be exhibited in morphological and physiological processes. Physiological characteristical adjustment is the main for plant adaptation to different light environment.The means of plasticity indexes for Betula albo-sinensis and Acer davidii seelings were greater than Picea asperata and Abies faxoniana, amplied that the two broad-leaved trees were much more adaptable to the environment. In addition, spruce had the higher adaptablity than fir. The findings supported the hypothesis that the ecological characteristics of the species determined the biological status and its biological habitat selection. Photoinhibition and photoprotection to light Compared with conifer, broad-leaved trees could better change leaf morphology and adjust biomass allocation to adapt to changing light environment. However, excess light can photoinhibit photosynthesis and may lead to photooxidative destruction of the photosynthetic appatus. Two field experiments were conducted to study the photoinhibition of photosynthesis. The results showed that when plants grown under high light environment or plants transferred from low to high irradiance, the four tree seedlings would undergo a period of photoinhibition. In four species, photoinhibited leaves could recover to initial photosynthetic rates when they were long-term planted under high light environment. However, when plants were suddenly exposed to high irradiance, this photoinhibition could not be reversible, may be the photosynthesis apparatus were (or partly) photooxidatively destructed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

采用TWINSPAN分类法对黄土丘陵沟壑区吴起县双树沟流域30个自然恢复草地植被进行分类,并对分类后各植被群落特征和地上生物量进行统计分析。结果表明:在自然恢复条件下,随着退耕年限的不断增加,退耕地植被自然恢复依次经历了猪毛蒿群落—赖草+长芒草群落—赖草+铁杆蒿群落—铁杆蒿群落—铁杆蒿+茭蒿群落5个发展阶段,地带性植被类型铁杆蒿+茭蒿群落在研究区内开始出现,并且已经占有一定优势;随着退耕地植被自然恢复的不断进行,Margalef等丰富度指数以及Shannon-wiener等多样性指数、Pielou等物种均匀度指数和地上生物量都呈现出先减小后增大的发展趋势;在植被自然恢复的稳定阶段,虽然物种丰富度指数和物种多样性指数有一定的增加,但是相对恢复初期来讲还是有所下降,并且有达到与初期相当水平的趋势;物种丰富度指数均在第1恢复阶段最大,而均匀度指数Jsw以及Shannon-wiener指数在第5恢复阶段最高。随着退耕地植被自然恢复的不断进行,植被群落总盖度随着退耕年限的延长而不断增大。