30 resultados para AMPHIBIA: ANURA: BUFONIDAE
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
The mitochondrial DNA of the rice frog, Fejervarya limnocharis (Amphibia, Anura), was obtained using long-and-accurate polymerase chain reaction (LA-PCR) combining with subcloning method. The complete nucleotide sequence (17,717 bp) of mitochondrial genome was determined subsequently. This mitochondrial genome is characterized by four distinctive features: the translocation of ND5 gene, a cluster of rearranged tRNA genes (tRNA(Thr), tRNA(Pro), tRNA(Leu) ((CUN))) a tandem duplication of tRNA(Mer) gene, and eight large 89-bp tandem repeats in the control region, as well as three short noncoding regions containing two repeated motifs existing in the gene cluster of ND5/tRNA(Thr)/tRNA(Pro)/tRNA(Leu)/tRNA(Phe). The tandem duplication of gene regions followed by deletions of supernumerary genes can be invoked to explain the shuffling of tRNAM(Met) and a cluster of tRNA and ND5 genes, as observed in this study. Both ND5 gene translocation and tandem duplication of tRNA(Met) were first observed in the vertebrate mitochondrial genomes. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
The phylogenetic relationships among 12 genera of treefrogs (Family, Rhacophoridae), were investigated based on a large sequence data set, including five nuclear (brain-derived neurotrophic factor, proopiomelanocortin, recombination activating gene 1, tyr
Resumo:
Phylogenetic relationships and systematics of the eight currently recognized species of the genus Bombina were investigated using four mitochondrial gene fragments (16S rRNA, 12S rRNA, ND4-tRNA(LEU), and cytochrome b). We prepared two different concatenat
Resumo:
The partial nucleotide sequence of mitochondrial 12S and 16S rRNA genes was determined for 23 Chinese species of Rhaeophoridae (Amphibia: Anura), representing four of the eight recognized genera. Using Buergeriinae as the outgroup, phylogenetic analyses (
Resumo:
以线粒体DNA 的16S、ND4 和细胞色素B 三个基因片段的为测序和计算的 对象,对锄足蟾总科Pelobatidea 的角蟾科Megophryidae、锄足蟾科Pelobatidae、 掘足蟾科Scaphiopidae 和合跗蟾科Pelodytidae 这4 个科现生的所有属(除小臂蟾 属Leptobrachella 外)和绝大部分物种进行了分子系统学研究。综合的研究结果 表明,4 个科在系统演化上都各自形成独立的支系,证明了目前形态分类系统的 合理性。其亲缘关系的顺序依次是:东南亚的角蟾科与欧洲、西亚和非洲西北部 的锄足蟾科最近,然后二者与欧洲的另一个科合跗蟾科相聚,最后与北美洲的掘 足蟾科相聚。分化的先后为:掘足蟾科最先分化出来,然后是合跗蟾科,再后为 锄足蟾科,最后为角蟾科。角蟾科的两个亚科(角蟾亚科Megophryinae 和拟髭 蟾亚科Leptobrachiinae)在系统演化上也分别形成各自的支系,证明国内对亚科 的划分是合理的。这两个亚科虽然大部分为同域分布,但分别向不同的方向独立 演化。对属间系统演化关系的研究表明,锄足蟾科为单属、合跗蟾科为单属,掘 足蟾科为2 属(掘足蟾属Scaphiopus 和旱掘蟾属Spea),均为有效属,但角蟾科 原来划分的几个属的分类地位需要调整。本研究从整体上对这些属的分子系统演 化关系进行了分析和讨论,并对各主要科属的种间分子系统演化关系进行了分 析。通过本次实验, 我在角蟾亚科的属种分化和拟髭蟾亚科各属的属间和属内系 统演化关系的研究方面,提出了一些新的认识。 上述该分子系统研究还参照了形态学系统发育的研究和核型的比较研究。并 根据地质、地理、气候和生态环境及物种习性的有关资料对该类群的系统演化过 程和机理进行了分析和讨论。
Resumo:
棘蛙族(Tribe Paini)隶两栖纲(Amphibia)、无尾目(Anura)、蛙科(Ranidae)、叉舌蛙亚科(Dicroglossinae),由棘蛙属(Paa)、倭蛙属(Nanorana) 和沙巴蛙属(Chaparana)构成(Dubois,1992)。由于特殊的形态特征和染色体核型,棘蛙族受到国内外学者的广泛重视和研究,但是到目前为止,棘蛙族的系统发育关系尚未明晰,族下属种的分类和归属问题还有待进一步研究和新的证据出现。本文通过光学显微镜、电子显微镜和石蜡切片对棘蛙族10 物种的精子和精巢进行研究,旨在了解棘蛙族精子的形态、量度、超微结构特征及不同季节精巢结构的变化规律,同时为棘蛙族的系统研究提供新的依据,也为棘蛙族濒危物种的保护和经济物种的繁殖提供基础资料。研究结果表明:棘蛙族各属物种精子的形态基本相似,精子整体呈线形,由头部、中片和尾部构成。精子头部呈长条状,顶体呈锥状,位于头部顶端并向前伸出,中片较长,尾部波动弯曲。棘蛙族各属物种精子量度差异较大,将各属物种精子头部、中片、尾部、头宽、尾宽的量度数据进行聚类分析,结果表明棘蛙族10 物种可分为三类:第一类包括棘侧蛙、合江棘蛙、小棘蛙、棘腹蛙和棘胸蛙,特点是精子较短,全长在72.6~103.35µm 之间;第二类包括倭蛙、高山倭蛙、腹斑倭蛙,特点是精子较长,全长在107.74~129.75µm 之间;第三类包括隆肛蛙和双团棘胸蛙,特点是精子最长,全长在145.89~165.84µm 之间。棘蛙族各属精子超微结构基本相似:精子头部由顶体、细胞核构成;中片由中心粒、线粒体构成;尾部由单根轴丝构成。精子顶体横切呈圆环状,细胞核电子密度高;线粒体为卵圆形,呈环状围绕轴丝排列,线粒体数目较多,约30层;尾部轴丝为典型的9+2结构,即由2根中央微管和9对外周微管组成。不同季节的倭蛙精巢结构变化表明倭蛙精巢每年只有一个生精周期,生精周期始于7 月,繁殖季节从5 月到6 月,生精高峰期为9 月;根据倭蛙不同季节精巢结构的变化,可将生精周期分为3 个阶段:第一阶段从7 月到9 月,为精子形成期;第二阶段从10 月到翌年4 月,为精子的贮存阶段,也即倭蛙的冬眠期;第三阶段从5 月到6 月,为精子的排放阶段,即倭蛙的繁殖期。不同季节的隆肛蛙精巢结构变化表明5 月为隆肛蛙的繁殖高峰期。根据棘蛙族各属精子的形态、量度和超微结构特征,结合已有的棘蛙族形态学、生态学、染色体核型及系统学研究成果,本文认为:1.基于精子数据对棘蛙族的划分和基于形态学及分子系统学数据对棘蛙族的划分均有相同之处,精子形态结构可为棘蛙族的系统研究提供新的证据。2. 棘蛙族各属精子的形态、量度及超微结构不仅与蛙科其他属种有明显差异,而且在无尾类中也较为特殊,精子学研究结果支持将棘蛙族从蛙科中分离出来,归隶于叉舌蛙科的叉舌蛙亚科的系统学修正。3. 精子的顶体、细胞核、中片的形态结构及量度可作为蛙科的分类指标。On the base of unique morphological and kyrotype characters, Dubois(1992)recognized three genera Paa, Narnorana, Chaparana as tribe Paini, which is amember of Dicroglossinae, Ranidae. In present study, the sperm shape, size andultrastructure of 10 paini species were investigated through the light and electronmicroscope, and testis structure of N. pleskei and F. quadrana was also studied. Wesuppose this study could offer some spermatological evidence to phylogeny andreproduction study of tribe Paini. The results were as follows:The sperm shape of tribe paini is homologically similar, the spermatozoa arefiliform, composed of elongate head, long mid-piece and waved tail. The acrosome isapically associated with the nucleus and extend anteriorly.The sperm length of tribe paini differ remarkably among genera. Cluster for thelength of sperm head, mid-piece, tail, total length, head-width, tail-width of ten painifrogs indicated the 10 species could be separated into three groups: GroupⅠcontainsP. shini, P. robertingeri, P. spinosa, P. exilispinosa, P. boulengeri, the spermatozoa ischaracterized with short in total length, ranging from 72.6µm to 103.35µm; GroupⅡcontains N. pleskei, N. parkeri, N. ventripunctata, the spermatozoa ischaracterized with relatively long in total length, ranging from 107.74µm to129.75µm; Group Ⅲ contains F. quadrana and P. yunnanensis, the spermatozoa is characterized with longest in total length, ranging from 145.89µm to 165.84µm. thethree groups based on spermatological data is partially match the classification basedon morphological and molecular data.The ultrastructure of spermatozoa in tribe paini is also basic similar, includingacrosome vescile, nuleus of the head proper, centriole, mitochondriol of themid-pieces, axoneme of the tail. The acrosome vescle is circle in TEM transversesection, the density of nucleus is high; The mitochondrions is oval, surrounding theaxial filament with about 30 layers of mitochondria; The axoneme has the typical 9+2pattern of microtubules.The seasonal changes in testis of N. pleskei indicates it has only onespermatogenesis circle, which begin in July, the reproduction season is from May toJune, the spermatogenesis is active in September. On the base of seasonal changes intestis, the spermatogenesis circle can be separated into three stages: In stageⅠfromJuly to September, spermatids are formed; In stage Ⅱ from October to April next year,the spermatozoa are stored in testis,which is the hibernated period; In stage Ⅲ fromMay to June, mature spermatozoa were released from the testis, which is thereproduction season of N. pleskei. As to F. quadrana, reproduction is active in May.With the previous study of morphology, ecology, karyotypes and phylogenyresearch of tribe Paini, the spermatological data in present study suggests:1. The spermatological classification of tribe paini is partially consistant with themorphological and molecular classification respectively.2.The sperm morphology and ultrustructure of tribe paini is unique not only inthe family Ranida but also in Anura, which suggest the tribe paini is monophyletic andmight be transfered from the family Ranida to the family Dicroglossidae based onmolecular evidence.3. The acrosome, nuleus, shape, length and ultrastructure of mid-piece can beused as an alternative taxonomic character in Anura.
Resumo:
We investigated the relationships of Asian bufonids using partial sequences of mitochondrial DNA genes. Twenty-six samples representing 14 species of Bufo from China and Vietnam and 2 species of Torrentophryne from China were examined. Three samples of Bufo viridis from Armenia and Georgia were also sequenced to make a comparison to its sibling tetraploid species B. danatensis. Bufo americanus, from Canada, was used as the outgroup. Sequences from the 12S ribosomal RNA, 16S ribosomal RNA, cytochrome b, and the control region were analyzed using parsimony. East Asian bufonids were grouped into two major clades. One clade included B. andrewsi, B. bankorensis, B. gargarizans, B. tibetanus, B. tuberculatus, its sister clade B. cryptotympanicus, and the 2 species of Torrentophryne. The second clade consisted of B. galeatus, B. himalayanus, B. melanostictus, and a new species from Vietnam. The placement of three taxa (B. raddei B. viridis, and its sister species, B. danatensis) was problematic. The genus Torrentophryne should be synonymized with Bufo to remove paraphyly. Because B. raddei does not belong to the clade that includes B. viridis and B. danatensis, it was removed from the viridis species group. The species status of B bankorensis from Taiwan is evaluated. (C) 2000 Academic Press.
Resumo:
In order to evaluate the five species groups of Chinese Amolops based on morphological characteristics, and to clarify the phylogenetic position of the concave-eared torrent frog Amolops tormotus, we investigated the phylogeny of Amolops by maximum parsim
Resumo:
Phylogenetic relationships among representative species of the subfamily Raninae were investigated using approximately 2000 base pairs of DNA sequences from two mitochondrial (12S rRNA, 16S rRNA) and two nuclear (tyrosinase, rhodopsin) genes. Phylogenetic
Resumo:
Phylogenetic relationships among representative species of the family Rhacophoridae were investigated based on 2904 bp of sequences from both mitochondrial (12S rRNA, 16S rRNA, the complete t-RNA for valine), and nuclear (tyrosinase, rhodopsin) genes. Max
Resumo:
Eastern and western populations of the ranid frog Odorrano chapaensis from Vietnam and China are readily differentiated by morphology and mtDNA, and weakly differentiated by morphometrics. The western population contains the type localities of O. chopoens
Resumo:
A new species in the genus Vibrissaphora was fonnd during a 2003 survey of the southern part of Yunnan Province, China. The new species appears intermediate between the genera Vibrissaphoro and Leptobrachium. Unlike other species of Vibrissaphora, it has
Resumo:
A new species of Amolops is described from a mountainous area of southern Yunnan Province, China. The species is unique in having a dark purple dorsum with small light yellow spots. The spots are smaller than the smallest finger disk. Other characters tha
Resumo:
The phylogenetic relationships among rhacophorid frogs are under dispute. We use partial sequences of three mitochondrial (12S rRNA, 16S rRNA, and cytochrome b) and three nuclear protein-coding (Rag-1 rhodopsin exon 1, and tyrosinase exon 1) genes from 57
Resumo:
The generic allocation of Indian and Sri Lankan Philautus needs further examination. In this study, a comprehensive understanding of the phylogeny of Indian and Sri Lankan Philautus is obtained based on 125 and 16S rRNA genes. All phylogenetic analyses indicate that Indian-Sri Lankan Philautus, Philautus menglaensis, Philautus longchuanensis, and Philautus gryllus form a well supported clade, separate from Philautus of Sunda Islands that form another well supported clade representing true Philautus. This result supports the designation of the genus Pseudophilautus to accommodate the Indian and Sri Lankan species. Pseudophilautus consists of two major lineages, one comprises the majority of Indian species, Chinese species, and Southeast Asian species, and one comprises all Sri Lankan species and a few Indian species. Pseudophilautus may have originated in South Asia and dispersed into Southeast Asia and China. Based on the results, we further suggest that Philautus cf. gryllus (MNHN1997.5460) belongs to the genus Kurixalus. (C) 2010 Published by Elsevier Ltd.