92 resultados para AIRICA analyzer (Miranda)
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
We present a universal analyzer for the three-particle Greenberger-Horne-Zeilinger (GHZ) states with quantum nondemolition parity detectors and linear-optics elements. In our scheme, all of the three-photon GHZ states can be discriminated with nearly unity probability in the regime of weak nonlinearity feasible at the present state of the art experimentally. We also show that our scheme can be easily extended to the analysis of the multi-particle GHZ states.
Resumo:
This paper presents a systematic description of the methods for calibrating microwave network analyzer and test fixtures, and discusses the problems arising in the calibration. The general criteria for choosing calibration standards and corresponding algorithms are discussed and suggestions to overcome these problems and improve the calibration accuracy are also given. It has been found that for reciprocal test fixtures, the four equations obtained with the thru standard can be used at the same time. Meanwhile, the calibration accuracy can be improved. It has been shown that using the same calibration procedures but different algorithms may lead to the occurrence of frequency limitation.
Resumo:
The experimental results for the excited time of the nonequlibrium radiation and the ionization behind strong shock waves are presented. Using an optical multichannel analyzer, InSb infrared detectors and near-free-molecular Langmuir probes, the infrared radiation, the electron density of air and the nonequilibrium radiation spectra at different moments of the relaxation process in nitrogen test gas behind normal shock waves were obtained, respectively, in hydrogen oxygen combustion driven shock tubes.
Resumo:
The optimization of off-null ellipsometry is described with emphasis on the improvement of sample thickness sensitivity. Optimal conditions are dependent on azimuth angle settings of the polarizer, compensator, and analyzer in a polarizer-compensator-sample-analyzer ellipsometer arrangement. Numerical simulation utilized offers an approach to present the dependence of the sensitivity on the azimuth angle settings, from which optimal settings corresponding to the best sensitivity are derived. For a series of samples of SiO2 layer (thickness in the range of 1.8-6.5 nm) on silicon substrate, the theory analysis proves that sensitivity at the optimal settings is increased 20 times compared to that at null settings used in most works, and the relationship between intensity and thickness is simplified as a linear type instead of the original nonlinear type, with the relative error reduced to similar to 1/100 at the optimal settings. Furthermore the discussion has been extended toward other factors affecting the sensitivity of the practical system, such as the linear dynamic range of the detector, the signal-to-noise ratio and the intensity from the light source, etc. Experimental results from the investigation Of SiO2 layer on silicon substrate are chosen to verify the optimization. (c) 2007 Optical Society of America.
Resumo:
With the PDPA (Phase Doppler Particle Analyzer) measurement technology, the probability distributions of particle impact and lift-off velocities on bed surface and the particle velocity distributions at different heights are detected in a wind tunnel. The results show that the probability distribution of impact and lift-off velocities of sand grains can be expressed by a log-normal function, and that of impact and lift-off angles complies with an exponential function. The mean impact angle is between 28 degrees and 39 degrees, and the mean lift-off angle ranges from 30 degrees to 44 degrees. The mean lift-off velocity is 0.81-0.9 times the mean impact velocity. The proportion of backward-impacting particles is 0.05-0.11, and that of backward-entrained particles ranges from 0.04 to 0.13. The probability distribution of particle horizontal velocity at 4 mm height is positive skew, the horizontal velocity of particles at 20 mm height varies widely, and the variation of the particle horizontal velocity at 80 mm height is less than that at 20 mm height. The probability distribution of particle vertical velocity at different heights can be described as a normal function.
Resumo:
Sand velocity in aeolian sand transport was measured using the laser Doppler technique of PDPA (Phase Doppler Particle Analyzer) in a wind tunnel. The sand velocity profile, probability distribution of particle velocity, particle velocity fluctuation and particle turbulence were analyzed in detail. The experimental results verified that the sand horizontal velocity profile can be expressed by a logarithmic function above 0.01 in, while a deviation occurs below 0.01 m. The mean vertical velocity of grains generally ranges from -0.2 m/s to 0.2 m/s, and is downward at the lower height, upward at the higher height. The probability distributions of the horizontal velocity of ascending and descending particles have a typical peak and are right-skewed at a height of 4 turn in the lower part of saltation layer. The vertical profile of the horizontal RMS velocity fluctuation of particles shows a single peak. The horizontal RMS velocity fluctuation of sand particles is generally larger than the vertical RMS velocity fluctuation. The RMS velocity fluctuations of grains in both horizontal and vertical directions increase with wind velocity. The particle turbulence intensity decreases with height. The present investigation is helpful in understanding the sand movement mechanism in windblown sand transport and also provides a reference for the study of blowing sand velocity. (C) 2007 Elsevier B.V All rights reserved.
Resumo:
The probability distribution of lift-off velocity of the saltating grains is a bridge to linking microscopic and macroscopic research of aeolian sand transport. The lift-off parameters of saltating grains (i.e., the horizontal and vertical lift-off velocities, resultant lift-off velocity, and lift-off angle) in a wind tunnel are measured by using a Phase Doppler Particle Analyzer (PDPA). The experimental results show that the probability distribution of horizontal lift-off velocity of saltating particles on a bed surface is a normal function, and that of vertical lift-off velocity is an exponential function. The probability distribution of resultant lift-off velocity of saltating grains can be expressed as a log-normal function, and that of lift-off angle complies with an exponential function. A numerical model for the vertical distribution of aeolian mass flux based on the probability distribution of lift-off velocity is established. The simulation gives a sand mass flux distribution which is consistent with the field data of Namikas (Namikas, S.L., 2003. Field measurement and numerical modelling of acolian mass flux distributions on a sandy beach, Sedimentology 50, 303-326). Therefore, these findings are helpful to further understand the probability characteristics of lift-off grains in aeolian sand transport. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
采用相位多普勒粒子分析仪(phase Doppler particle analyzer,PDPA)测量了风沙两相流动中沙床面上沙粒碰撞和起跳速度概率分布以及不同高度处沙粒速度概率分布.结果表明,沙床面上沙粒碰撞和起跳速度概率分布均可用对数正态分布函数描述,碰撞和起跳角度均可用指数分布函数描述.沙粒平均碰撞角度为28°~39°,平均起跳角度为30°~44°,平均起跳速度为平均碰撞速度的0.81~0.9倍,向后碰撞沙粒占总碰撞沙粒的比例为0.05~0.11,向后起跳沙粒占总起跳沙粒的比例为0.04~0.13.沙粒水平速度概率分布在4mm高度处表现为正偏斜类型,在20mm高度处沙粒水平速度的变化范围更加广泛,在80mm高度处沙粒水平速度变化范围小于20mm高度处的变化范围.沙粒垂直速度概率分布在不同高度处均可表示为正态分布函数.
Resumo:
The optimization of off-null ellipsometry is described with emphasis on the improvement of resolution for visualizing biomolecule layers. For optical biosensor with layer thickness below 6.5 nm, a numerical simulation for the dependence of resolution on the azimuth settings of polarizer and analyzer is presented first. For comparison, three different resolutions are given at three azimuth settings which are near null and far away from null condition, respectively. Furthermore, the square or linear approximation relationship between the intensity and the layer thickness are also given at these settings. The difference among their accuracy is up to 100 times or so. Experimental results of the biosensor sample verify the optimization.
The Influence of Viscosity and Surface Tension on Atomization of Water/Methanol and Diesel Emulsions
Resumo:
This paper shows the result of experimental studies of the influence of viscosities, surface tensions on atomization characteristics of water/methanol and diesel emulsions. Three emulsifying agents Y01, Y02 and Y03, with viscosity of 1.32 ~ 1.5 Pa·s and HLB values of 5.36, 4.83 and 4.51 respectively was produced by Span 80 and Tween 60. In the W/O emulsions, the aqueous phase is between 10% and 50%; the agent concentration added is 0.8 ~ 8.0%. The viscosity of the emulsions is 0.003 ~ 0.02 Pa·s, and the surface tension is 0.04 ~ 0.1 N/m. The types and concentrations of agents and the aqueous phase ( < 50%) significantly influence the viscosity of the emulsions and the Sauter Mean Diameter, measured by Malvern Particle Analyzer SERIES 2600.
Resumo:
In order to characterize the physical and spatial properties of nano-film pattern on solid substrates, an automatic imaging spectroscopic ellipsometer (ISE) based on a polarizer - compensator - specimen - analyzer configuration in the visible region is presented. It can provide the spectroscopic ellipsometric parameters psi (x, y, lambda) and Delta (x, y, lambda) of a large area specimen with a lateral resolution in the order of some microns. A SiO2 stepped layers pattern is used to demonstrate the function of the ISE which shows potential application in thin film devices' such as high-throughput bio-chips.
Resumo:
高频感应等离子体风洞适合于基础研究特别是用于防热材料的催化特性的研究,本文用实验测量和数值模拟了该风洞的温度场和速度场。温度场是用OSA (Optical Spectrum Analyzer)进行光谱分析得到的,同时用水冷总压和静压探针对风洞的流场进行测量得到了速度场的空间分布。数值模拟采用完全二维的高频感应等离子模型,我们通过求解相关的能量方程、流体动力学方程和电磁场方程得到了相应的温度场和流场。比较了数值模拟结果与实现测量结果,并给出了不同运行参数下的典型数值结果。
Resumo:
单纵模掺铒光纤激光器在光通信和光传感等方面有着广泛的应用前景。设计了一种新型的光纤激光器,在光纤环形镜中嵌入未抽运的掺铒光纤作为可饱和吸收体以抑制多纵模,用光纤环谐振腔作为滤波器抑制拍频噪声,用光纤光栅作为波长选择器件,最终得到了单纵模输出并消除了拍频噪声。使用零拍法测量其线宽小于频谱仪的低频极限5kHz。实验结果证明了可饱和吸收体和光纤环的功能。
Resumo:
The concept of an extended fractional Fourier transform (FRT) is suggested. Previous PBT's and complex FRT's are only its subclasses. Then, through this concept and its method, we explain the physical meaning of any optical Fresnel diffraction through a lens: It is just an extended FRT; a lens-cascaded system can equivalently be simplified to a simple analyzer of the FRT; the two-independent-parameter FRT of an object illuminated with a plane wave can be readily implemented by a lens of arbitrary focal length; when cascading, the Function of each lens unit and the relationship between the adjacent ones are clear and simple; and more parameters and fewer restrictions on cascading make the optical design easy. (C) 1997 Optical Society of America.
Resumo:
针对现有光弹调制器标定方法的不足,提出了一种精确标定光弹调制器的新方法。首先利用起偏器、波片、光弹调制器和检偏器构成标定光路.通过寻找探测信号基频分量的极大值进行粗略标定,使光弹调制器的峰值延迟量处在1.841rad附近。然后撤走波片形成光弹凋制器的精确标定光路.在检偏器旋转90°前后获得探测信号的直流分量和二次谐波分量。最后利用这两种探测信号的直流分量和二次谐波分量精确地计算出光弹调制器的峰值延迟量。实验验让了此光掸调制器标定方法,实验结果表明其标定误差仅为0.7%。在此光掸凋制器标定方法中.光弹调制器