13 resultados para ACUTE-RESPIRATORY-SYNDROME
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
Severe acute respiratory syndrome (SARS) is a serious disease with many puzzling features. We present a simple, dynamic model to assess the epidemic potential of SARS and the effectiveness of control measures. With this model, we analysed the SARS epidemic data in Beijing. The data fitting gives the basic case reproduction number of 2.16 leading to the outbreak, and the variation of the effective reproduction number reflecting the control effect. Noticeably, our study shows that the response time and the strength of control measures have significant effects on the scale of the outbreak and the lasting time of the epidemic.
Resumo:
Background: Polymorphisms of CLEC4M have been associated with predisposition for infection by the severe acute respiratory syndrome coronavirus (SARS-CoV). DC-SIGNR, a C-type lectin encoded by CLEC4M, is a receptor for the virus. A variable number tandem
Resumo:
Background: The outbreak of severe acute respiratory syndrome (SARS) caused a severe global epidemic in 2003 which led to hundreds of deaths and many thousands of hospitalizations. The virus causing SARS was identified as a novel coronavirus (SARS-CoV) an
Resumo:
We proposed a novel methodology, which firstly, extracting features from species' complete genome data, using k-tuple, followed by studying the evolutionary relationship between SARS-CoV and other coronavirus species using the method, called "High-dimensional information geometry". We also used the mothod, namely "caculating of Minimum Spanning Tree", to construct the Phyligenetic tree of the coronavirus. From construction of the unrooted phylogenetic tree, we found out that the evolution distance between SARS-CoV and other coronavirus species is comparatively far. The tree accurately rebuilt the three groups of other coronavirus. We also validated the assertion from other literatures that SARS-CoV is similar to the coronavirus species in Group I.
Resumo:
We have developed a new experimental system based on a microfluidic chip to determine severe acute respiratory syndrome coronavirus (SARS-Cov). The system includes a laser-induced fluorescence microfluidic chip analyzer, a glass microchip for both polymerase chain reaction (PCR) and capillary electrophoresis, a chip thermal cycler based on dual Peltier thermoelectric elements, a reverse transcription-polymerase chain reaction (RT-PCR) SARS diagnostic kit, and a DNA electrophoretic sizing kit. The system allows efficient cDNA amplification of SARS-CoV followed by electrophoretic sizing and detection on the same chip. To enhance the reliability of RT-PCR on SARS-CoV detection, duplex PCR was developed on the microchip. The assay was carried out on a home-made microfluidic chip system. The positive and the negative control were cDNA fragments of SARS-CoV and parainfluenza virus, respectively. The test results showed that 17 positive samples were obtained among 18 samples of nasopharyngeal swabs from clinically diagnosed SARS patients. However, 12 positive results from the same 18 samples were obtained by the conventional RT-PCR with agarose gel electrophoresis detection. The SARS virus species can be analyzed with high positive rate and rapidity on the microfluidic chip system.
Resumo:
:严重急性呼吸综合症(Severe acute respiratory sydrome , SARS) 是一种全新的传染性疾病,它可能主 要是由冠状病毒的一个变种引起的. 本文比较SARS 及其它冠状病毒基因组组织结构和序列变异的情况,初步 的结果表明: ①尽管SARS 病毒与冠状病毒属的另外6 种病毒基因组序列上有较大的差异,但是它们具有较相 似的基因组组织结构; ②SARS 病毒与牛冠状病毒、鼠肝炎病毒具有较近的系统发育关系; ③虽然SARS 病毒扩 散的时间极短,但来自不同地区SARS 病毒的DNA 序列却存在一些突变,且这些突变又大多是改变氨基酸序 列的非同义突变.
Resumo:
A method of loop-mediated isothermal amplification (LAMP) was employed to develop a rapid and simple detection system for porcine circovirus type 2 (PCV2). The amplification could be finished in 60 min under isothermal condition at 64 degrees C by employing a set of four primers targeting the cap gene of PCV2. The LAMP assay showed higher sensitivity than the conventional PCR, with a detection limit of five copies per tube of purified PCV2 genomic DNA. No cross-reactivity was observed from the samples of other related viruses including porcine circovirus type 1 (PCV1), porcine parvovirus (PPV), porcine pseudorabies virus (PRV) and porcine reproductive and respiratory syndrome virus (PRRSV). The detection rate of PCV2 LAMP for 86 clinical samples was 96.5% and appeared greater than that of the PCR method. The LAMP assay reported can provide a rapid yet simple test of PCV2 suitable for laboratory diagnosis and pen-side detection due to ease of operation and the requirement of only a regular water bath or heat block for the reaction. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
To study the influence of Hypericum perforatum extract (HPE) on piglets infected with porcine respiratory and reproductive syndrome virus (PRRSV), enzyme-labeled immunosorbent assay (ELISA) and cytopathic effect (CPE) were used to determine in vitro whether HPE could induce swine pulmonary alveolar macrophages (PAMs) to secrete IFN-gamma, and whether PRRSV titers in PAMs were affected by the levels of HPE-induced IFN-gamma. HPE (200 mg kg(-1)) was administrated by oral gavage to piglets infected with the PRRSV in vivo to observe whether HPE affected the viremia, lung viral titers, and weight gain of piglets infected with PRRSV. The results showed that HPE was capable of inducing PAMs to produce IFN-gamma in a dose dependent manner and HPE pretreatment was capable of significantly reducing PRRSV viral titers in PAMs (P<0.01). Administration of HPE to the PRRSV-infected animals significantly (P<0.05) reduced viremia over time as compared with the PRRSV-infected animals. But there was not significant decrease in lung viral titers at day 21 post-infection between the HPE-treated animals and the PRRSV-infected control piglets. There were no significant differences in weight gain over time among the HPE-treatment animals, the normal control, and the HPE control animals. The PRRSV-infected animals caused significant (P<0.01) growth retardation as compared with the HPE controls and the normal piglets. It suggested that HPE might be an effective novel therapeutic approach to diminish the PRRSV-induced disease in swine.
Resumo:
In order to observe the effect of salinity on disease resistance and white spot syndrome virus (WSSV) proliferation in Fenneropenaeus chinensis, shrimps with latent WSSV were subjected to two acute salinity changes from the original salinity of 22 ppt to 18 and 14 ppt in an hour, respectively. The total haemocyte count (THC) of the challenged group showed no evident change under salinity adjustments, but the phenoloxidase (PO) index declined significantly (P<0.05) corresponding to continuing acute salinity changes from the 24th to the 72nd hour. According to the WSSV load detected by quantitative real-time PCR method, it was found that WSSV carried by the challenged group and control group were significantly different (P<0.05); acute salinity change from 22 to 14 ppt led to the WSSV carried in the challenged group being significantly higher (P<0.05) than that of those surviving in 22 ppt, but salinity change from 22 to 18 ppt had no such effect. At the end of the 72-h experiment, the challenged group subjected to salinity change from 22 to 14 ppt had nearly 3 times the WSSV load as the control group with no salinity change. Therefore, salinity changes over a particular range could result in a decrease of immunocompetence and obvious WSSV proliferation in the shrimps, leading to white spot syndrome developing from a latent infection to an acute outbreak. (C) 2005 Elsevier B.V All rights reserved.