2 resultados para 860[899]-31.09

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To explore the changes of soil chemical properties in vegetable greenhouse,a comparative study was carried out with the samples gathered from vegetable greenhouse fields and their adjacent upland fields in Damintun Town,Xinming County,Liaoning Province.The results showed that compared with upland fields,the contents of soil organic carbon and total nitrogen in greenhouse fields increased significantly.At the depth of 0~30 cm,soil organic carbon in greenhouses of 1-,4-and 10-year increased by 31.09%,35.44%,and 66.80%,respectively,compared with the upland soil.Soil nitrate content at the depth of 0~30 cm in greenhouse fields was 5.05~12.49 times as much as that in upland fields.The nitrate content in different soil layers increased with the increasing age of greenhouse field.,e.g.,at the depth of 20~30 cm,soil nitrate content was significantly higher in 10-year than in 1-and 4-year greenhouse field,with an increase of 65.73% and 50.89%,respectively,and 6.55 times as much as that in upland field,which indicated that soil nitrate transported downwards,and obviously enriched in deeper soil layers under heavy application of fertilizer.Also with the increasing age of greenhouse field,soil pH decreased,while soil soluble salts accumulated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental investigation was conducted to study the holdup distribution of oil and water two-phase flow in two parallel tubes with unequal tube diameter. Tests were performed using white oil (of viscosity 52 mPa s and density 860 kg/m(3)) and tap water as liquid phases at room temperature and atmospheric outlet pressure. Measurements were taken of water flow rates from 0.5 to 12.5 m(3)/h and input oil volume fractions from 3 to 94 %. Results showed that there were different flow pattern maps between the run and bypass tubes when oil-water two-phase flow is found in the parallel tubes. At low input fluid flow rates, a large deviation could be found on the average oil holdup between the bypass and the run tubes. However, with increased input oil fraction at constant water flow rate, the holdup at the bypass tube became close to that at the run tube. Furthermore, experimental data showed that there was no significant variation in flow pattern and holdup between the run and main tubes. In order to calculate the holdup in the form of segregated flow, the drift flux model has been used here.