20 resultados para 32KZ20090109-track
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
This paper presents a series of soot tracks formed by gaseous detonation waves diffracting around wedges with different wedge angles. These cellular structure patterns describe the Mach-reflection processes of a detonation and reveal some unique characteristics. They can be used to analyze the relationship between the trajectory angle of the triple point, wedge angle, and initial pressure in Mach reflection. Compared to the Mach-reflected one-dimensional shock wave in nonreactive air, all these unique characteristics for a Mach-reflected detonation should be attributed to the transverse-wave structure of the detonation front; meanwhile, the precursor shock wave and transverse wave influence the Mach-reflected detonation, respectively. The experimental results support the recently published numerical simulation of this complex phenomenon.
Resumo:
Based on the computer integrated and flexible laser processing system, an intelligent measuring sub-system was developed. A novel model has been built up to compensate the deviations of the main frame-structure, and a new 3-D laser tracker system is applied to adjust the accuracy of the system. To analyze the characteristic of all kind surfaces of automobile outer penal moulds and dies, classification of types of the surface、brim and ridge(or vale) area to be measured and processed has been established, resulting in one of the main processing functions of the laser processing system. According to different type of surfaces, a 2-D adaptive measuring method based on B?zier curve was developed; furthermore a 3-D adaptive measuring method based on Spline curve was also developed. According to the laser materials processing characteristics and data characteristics, necessary methods have been developed to generate processing tracks, they are explained in details. Measuring experiments and laser processing experiments were carried out to testify the above mentioned methods, which have been applied in the computer integrated and flexible laser processing system developed by the Institute of Mechanics, CAS.
Resumo:
Multi-track laser cladding is now applied commercially in a range of industries such as automotive, mining and aerospace due to its diversified potential for material processing. The knowledge of temperature, velocity and composition distribution history is essential for a better understanding of the process and subsequent microstructure evolution and properties. Numerical simulation not only helps to understand the complex physical phenomena and underlying principles involved in this process, but it can also be used in the process prediction and system control. The double-track coaxial laser cladding with H13 tool steel powder injection is simulated using a comprehensive three-dimensional model, based on the mass, momentum, energy conservation and solute transport equation. Some important physical phenomena, such as heat transfer, phase changes, mass addition and fluid flow, are taken into account in the calculation. The physical properties for a mixture of solid and liquid phase are defined by treating it as a continuum media. The velocity of the laser beam during the transition between two tracks is considered. The evolution of temperature and composition of different monitoring locations is simulated.
Resumo:
Submitted by CAS-IR
Resumo:
In this paper a two dimensional readout micromegas detector with a polyethylene foil as converter was simulated on GEANT4 toolkit and GARFIELD for fast neutron detection. A new track reconstruction method based on time coincidence technology was developed in the simulation to obtain the incident neutron position. The results showed that with this reconstruction method higher spatial resolution was achieved.
Resumo:
CdS nanotubes and nanowires have been synthesized with controlled dimensions by means of template-electrodeposition method in etched ion-track membranes. The diameters of nanotubes and nanowires are between 20 and I 10 nm, and the lengths are up to tens of micrometers. X-ray diffraction (XRD) and selected area electron diffraction (SAED) pattern investigations demonstrate that CdS nanotubes and nanowires are polycrystalline in nature. The UV-vis absorption spectra of CdS nanotubes and nanowires embedded in polycarbonate (PC) membranes show that the absorption edges of PC films shift towards the shorter wavelength, with decreasing diameters of the deposited nanostructures. The results indicate that nanowires are formed from nanotubes by nanotube-stuffing-growth mechanism.
Resumo:
Polycarbonate (PC) membranes were irradiated with swift heavy ions and latent tracks were created along the ions' trajectories. Nanopores, diameters between 100 and 500 nm, were obtained after illuminating the membranes with UV light and etching in NaOH solution. Silver nanowires were produced in the etched ion-track membranes by electrochemical deposition. The morphology and crystallinity of the silver nanowires were studied by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). Under certain conditions (deposition voltage 25 mV, current density 1-2 mA.cm(-2), temperature 50 degrees C, electrolyte 0.1 mol.L-1 AgNO3), single-crystalline silver nanowires with preferred orientation along the [111] direction can be synthesized.
Resumo:
介绍了一个峰保持电路。该电路适用于silicon strip,Si(Li),CdZn Te and CsI等探测器,实现采样-保持功能。已成功进行了基于CMOSFET的采样-保持电路的设计和仿真,通过使用Proteus的PSPICE仿真器和BSIMV3.3模型参数完成了电路性能的仿真。同时,实现了采样时间可在60ns到4.44s范围内进行选择,该电路具有较好的线性。