32 resultados para 250202 Main Group Metal Chemistry
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A new and synthetically versatile strategy has been developed for the phosphorescence color tuning of cyclometalated iridium phosphors by simple tailoring of the phenyl ring of ppy (Hppy=2-phenylpyridine) with various main-group moieties in [Ir(ppy-X)(2)(acac)] (X=B(Mes)(2), SiPh3, GePh3, NPh2, POPh2, OPh, SPh, SO2Ph). This can be achieved by shifting the charge-transfer character from the pyridyl groups in some traditional iridium ppy-type complexes to the electron-withdrawing main-group moieties and these assignments were supported by theoretical calculations.
Resumo:
The deliberate tailoring of hierarchical flowerlike gold microstructure (HFGMs) at the ultrathin level is an ongoing challenge and could introduce opportunities for new fabrication and application in many fields. In this paper. a templateless, surfactantless, electrochemical strategy for fabrication of ultrathin platinum-group metal coated HFGMs is proposed. HFGMs were prepared by simple electrodeposition on an indium tin oxide (ITO) substrate.
Resumo:
Three bidentate ligands, 4-phenyl-2-(2-pyridyl)-quinoline (ppq), 6-(carbazol-9-yl)-4-phenyl-2-(2-pyridyl)-quinoline (cpq) and 6-diphenylamino-4-phenyl-2-(2-pyridyl)-quinoline (dpq) and their zinc(II) complexes, have been designed and synthesized. The crystal structure of [Zn(ppq)(2)Cl]PF6 shows that the central zinc atom is coordinated with one chloride and four nitrogen atoms from two ligands. The introduction of an electron-donating substituent such as carbazole or an aromatic amine group at the 6-position of the quinoline moiety can generate colored tunable Zn complexes, and the photoluminescence (PL) wavelength was modulated from 418 nm for [Zn(ppq)(2)Cl]PF6 to 591 nm for [Zn(cpq)(2)Cl]PF6 and 638 nm for [Zn(dpq)(2)Cl]PF6 in CH2Cl2 solution. The electroluminescence spectrum of [Zn(dpq)(2)Cl]PF6 exhibits pure red light emission with the Commission Internationale de L'Eclairage (CIE) coordinates (0.63, 0.36) and a maximum at 648 nm.
Resumo:
Full Paper: Two new 1,1'-binaphthyl-2,2'-diyl-based dianhydrides, i.e., 2,2'-bis(3,4-dicarboxybenzamido)-1,1'-binaphthyl dianhydride (BNDADA) and 2,2'-bis(3,4-dicarboxybenzoyloxy)-1,1'-binaphthyl dianhydride (BNDEDA), were synthesized and polymerized with various aromatic diamines to afford polyimides through the traditional two-step method. The polyimides with inherent viscosities ranging from 0.27 to 0.70 dl . g(-1) showed excellent solubilities in polar solvents such as DMAc, DMSO and NMP etc., except of the poly(ester imide) prepared from BNDEDA and benzidine. Poly(ester imide)s based on BNDEDA can also be readily dissolved in weakly polar solvents such as THF, CH2Cl2 and CHCl3. The glass transition temperatures of these polyimides are in the range of 210-310 degrees C; the 5% weight loss temperatures are in the range of 390-465 degrees C in nitrogen and 384-447 degrees c in air. These polymers from light yellow, tough films that were transparent above 365 nm. The effects of different flexible units attached in the 2- and 2'-positions, i.e., amide, ester and ether, on the properties of the polyimides obtained are discussed.
Resumo:
Novel poly(aryl ether ketone)s containing a lateral methoxy group were synthesized by nucleophilic substitution reactions of 4,4'-biphenol and methoxyhydroquinone with 1,4-bis(4-fluorobenzoyl)benzene in a sulfolane solvent in the presence of anhydrous potassium carbonate. Their thermotropic liquid crystalline properties were characterized by a variety of experimental techniques, e.g. differential scanning calorimetry (DSC), polarized light microscopy and temperature-dependent FTIR. Thermotropic liquid crystalline behaviour was observed in the copolymers containing 30-80 mol-% mexthoxyhydroquinone. Both melting (T-m) and isotropization (T-i) transitions appeared in the DSC curves. The polarized light microscopy study of the liquid crystalline copolymers suggested their ordered smectic structures. As expected, the copolymers had lower melting transitions than the biphenol-based homopoly(aryl ether ketone)s because of the copolymerization effect of the crystal-disrupting monomer methoxyhydroquinone.
Resumo:
The reactions of half-sandwich diselenolate Mo and W complexes (CpM)-M-#(NO)(SePh)(2) (M = Mo; Cp-# = Cp' (1a), MeCp (1b); M = W; Cp-# = Cp' (1c)) with (Norb)Mo(CO)(4), Ni(COD)(2) and Fe(CO)(5) have been investigated. Treatment of (1a), (1b) and (1c) with (Norb)Mo(CO)(4) in PhMe gave the bimetallic complexes: Cp'Mo(NO)(mu -SePh)(2)Mo(CO)(4) (2a), MeCpMo(NO)(mu -SePh)(2)Mo(CO)(4) (2b) and Cp'W(NO)(mu -SePh)(2)Mo(CO)(4) (2c) in moderate yields. Irradiation of (1a) and (1c) in the presence of Fe(CO)(5) gave heterobimetallic complexes Cp'Mo(CO)(mu -SePh)(2)Fe(CO)(3) (3a) and Cp'W(NO)(mu -SePh)(2)Fe(CO)(3) (3c). Ni(COD)(2) reacts with two equivalents of (1a), (1b) and (1c) to give [Cp'Mo(NO)(mu -SePh)(2)](2)Ni (4a), [MeCpMo(NO)(mu -SePh)(2)](2)Ni (4b) and [Cp'W(NO)(mu -SePh)(2)](2)Ni (4c) in good yields. The new heterobimetallic complexes were characterized by i.r., H-1-n.m.r., C-13-n.m.r. and EI-MS spectroscopy.
Resumo:
The photo-induced decarbonylation of Cp'Cr(NO)(CO)(2) (1a) in MeCN solution in the presence of R2E2 (E = S, Se; R = Me, Ph) leads to the formation of chalcogenolato-bridged binuclear complexes Cp-2'Cr-2(NO)(2)(mu -ER)(2) [E = S; R = Me (2a), Ph (3a); E = Se, R = Me (4a), Ph (5a)] while reactions between Cp'M(NO)(CO)(2) [M = Mo (1b), W (1c)] and Ph2E2 (E = S, Se) result in mononuclear complexes Cp'M(NO)(EPh)(2) [M = Mo; E = S (9b), Se (10b); M = W, E = S (11c), Se (12c)]. The corresponding reactions of (1b) with Me2E2 (E = S, Se) yielded both mono and binuclear complexes: Cp'Mo(NO)(SeMe)(2) (8b), Cp-2'Mo-2(NO)(2)(mu -EMe)(2) [E = S (6b), Se (7b)]. The new complexes have been characterized by i.r., H-1-, C-13-n.m.r. spectra and by electron-impact mass spectrometry.
Resumo:
A new butterfly-like cluster [WOS3Cu2(PPh3)(2)(Py)(2)] was obtained by reacting [WOS3Cu2(PPb3)(3)] with pyridine. The crystal structure of the cluster has been determined by X-ray diffraction. The compound shows an unusual folded structure, in which two 4-coordinate Cu atoms are bound to the WOS3 moiety via two S-S edges.
Resumo:
Half-sandwich nitrosyl complexes Cp*M(NO)I-2 (M = Mo, or W) react with dithiocarbamates (NaS2CNMe2 and NaS2CNEt2) in THF to form of complexes: Cp*Mo(NO)I (S2CNMe2) (1), Cp*Mo(NO)I(S2CNEt2) (2), Cp*W(NO)I(S2CNMe2) (3) and Cp*W(NO)I(S2CNEt2) (4) in high yields. Treatments of Cp*M(NO)I-2 (M = Mo, W) or [CpMo(NO)I-2](2) with phosphinodithioate (NaS2PMe2) and phosphorodithioate [(NH4)S2P(OMe)(2)] result in complexes: Cp*Mo(NO)I(S2PMe2) (5a), CpMo(NO)I (S2PMe2) (5b), Cp*Mo(NO)(S2PMe2)(2) (6a), CpMo (NO) (S2PMe2)(2) (6b) and Cp*Mo(NO)I[S2P(OMe)(2)] (7), Cp*W(NO)I(S2PMe2) (8), Cp*W(NO) I[S2P(OMe)](2) (9). Treatment of (5a) and (5b) with an excess of NaS2PMe2 gives (6a) and (6b). The complexes have been characterized by their elemental analyses, i.r., H-1, C-13-n.m.r. and by EI-MS spectrometry.
Resumo:
A successful analysis of silver was reported utilizing laser desorption/ionization time-of-flight mass spectrometry (LDI/TOF-MS) in this paper, The silver cluster ions Ag-n(+) and AgnO+ (n=2 similar to 5) were formed during laser desorption/ionization. In the presence of I-, K+ and Na+, the peaks corresponding, to the cluster ions [AgnIn-1](+) (n=2 similar to 6) and the adduct ions [AgI](+), [AgI]Na+ and [AgI]K+ were observed in the positive ion spectrum; the peaks corresponding to [AgnIn+1](-) (n=1 similar to 3) were found in the negative ion spectrum, all of which accompanied by sliver isotope distribution, The formation of silver cluster ions was accomplished through two-stage reaction: the first step was the generation of clusters, which was followed by the processes of photoionization and ion/molecule reaction.
Resumo:
K4H2CoW12O40. 2Ti02 . 9H(2)O crystallizes from an aqueous solution of Na2WO4, Co(OAc)(2) and Ti(SO4)(2). The compound has very similar i.r. and u.v. spectra to those of [CoW12O40](6-) and [CoW11TiO40](8-) but its polarographic behaviour is different from that of [CoW11TiO40](8-) and exhibits only reduction of tungsten(VI). A single crystal structural analysis indicates that this compound consists of the heteropolyanion [CoW12O40](6-), titanium-oxygen chain, potassium ions and water molecules.
Resumo:
The reaction of diglycolic acid, O(CH2CO2H)(2), with Cu(NO3)(2) . H2O and lanthanoid nitrate hydrate produces a series of novel Ln-Cu mixed metal complexes, [Ln(2)CU(3){O(CH2CO2)(2)}(6)]. nH(2)O (Ln = La, Nd, n = 9; Ln = Er, n = 6), which have been characterized by elemental analysis, i.r. spectroscopy, magnetic measurements and X-ray crystallography. The Ln(3+) and Cu2+ ions are connected by the carboxylate groups of the ligands, resulting in the formation of a complicated network.