23 resultados para 049900 OTHER EARTH SCIENCES
em Chinese Academy of Sciences Institutional Repositories Grid Portal
Resumo:
A mantle plume is understood as a hot, narrow, upwelling flow in the earth's mantle and accompanied by an efficient transfer of mass and energy from deep to upper layer of the earth. The cylindrical plume in earth's mantle plays an important role in explaining the origin of the surface hot spots and linear island chains. From the basic hydrodynamical equations, the detailed mechanical and thermal structure of a cylindrical plume of Newtouian fluids with temperature and pressure-dependent viscosity are given in the present paper. For two sets of rheological parameters the radial profiles of upward velocity, temperature and viscosity in the plume and radiuses of the plume at various depths have been calculated.
Resumo:
The parameters at the symmetrical axis of a cylindrical plume characterize the strength of this plume and provide a boundary condition which must be given to investigate the structure of a plume. For Newtonian fluid with a temperature-and pressure-dependence viscosity, an asymptotical solution of hydrodynamic equations at the symmetrical axis of the plume is found in the present paper. The temperature, upward velocity and viscosity at the symmetrical axis have been obtained as functions of depth, The calculated results have been given for two typical sets of Newtonian rheological parameters. The results obtained show that the temperature distribution along the symmetrical axis is nearly independent of the theological parameters. The upward velocity at the symmetrical axis, however, is strongly dependent on the rheological parameters.
Resumo:
Because of the obvious importance of P as a nutrient that often accelerates growth of phytoplankton (including toxic cyanobacteria) and therefore worsens water quality, much interest has been devoted to P exchange across the sediment-water interface. Generally, the release mode of P from the sediment differed greatly between shallow and deep lakes, and much of the effort has been focused on iron and oxygen, and also on the relevant environmental factors, for example, turbulence and decomposition, but a large part of the P variation in shallow lakes remains unexplained. This paper reviews experimental and field studies on the mechanisms of P release from the sediment in the shallow temperate (in Europe) and subtropical (in the middle and lower reaches of the Yangtze River in China) lakes, and it is suggested that pH rather than DO might be more important in driving the seasonal dynamics of internal P loading in these shallow lakes, i.e., intense photosynthesis of phytoplankton increases pH of the lake water and thus may increase pH of the surface sediment, leading to enhanced release of P (especially iron-bound P) from the sediment. Based on the selective pump of P (but not N) from the sediment by algal blooms, it is concluded that photosynthesis which is closely related to eutrophication level is the driving force for the seasonal variation of internal P loading in shallow lakes. This is a new finding. Additionally, the selective pump of P from the sediment by algal blooms not only explains satisfactorily why both TP and PO4-P in the hypereutrophic Lake Donghu declined significantly since the mid-1980s when heavy cyanobacterial blooms were eliminated by the nontraditional biomanipulation (massive stocking of the filter-feeding silver and bighead carps), but also explains why TP in European lakes decreased remarkably in the spring clear-water phase with less phytoplankton during the seasonal succession of aquatic communities or when phytoplankton biomass was decreased by traditional biomanipulation. Compared with deep lakes, wax and wane of phytoplankton due to alternations in the ecosystem structure is also able to exert significant influences on the P exchange at the sediment-water interface in shallow lakes. In other words, biological activities are also able to drive P release from sediments, and such a static P release process is especially more prominent in eutrophic shallow lakes with dense phytoplankton.
Resumo:
Spatiotemporal variations of P species and adsorption behavior in water column, interstitial water, and sediments were investigated in the large shallow eutrophic Lake Chaohu. Orthophosphate (Ortho-P) and total phosphorus (TP) concentrations were significantly higher in the western part than in the eastern part of the lake, due to different nutrient inputs from the surrounding rivers. Moreover, particulate phosphorus (PP) concentration was in a similar spatial pattern to Ortho-P and TIP concentrations, and also showed significantly positive correlation with the biomass of Microcystis, indicating more uptake and store of phosphorus by Microcystis than by other algae. Increase of pH and intensive utilization of P by phytoplankton were the main factors promoting P (especially Fe-P) release from the sediment to interstitial water during the cyanobacterial blooms in Lake Chaohu. Spatial dynamics in TP concentration, P species and adsorption behavior of the sediment, coupled with the statistical analyses, suggested that the spatial heterogeneity of P contents in the sediment was influenced by various factors, e.g. human activities, soil geochemistry and mineral composition. In spite of similar TP contents in the sediments, increase in proportion of Fe-P concentration in the sediment may result in a high risk of P release.
Resumo:
Phosphatase may accelerate the process of lake eutrophication through improving phosphorus bioavailability. This mechanism was studied in three Chinese eutrophic shallow lakes (Lake Taihu, Lake Longyang,and Lake Lianhua). Phosphatase activity was related to the concentration of soluble reactive phosphorus (SRP) and chlorophyll a. Stability of dissolved phosphatase in reverse micelles may be attributed to molecular size, conformation and active residues of the enzyme. At the site with Microcystis bloomed in Lake Taihu, dissolved phosphatase activity was higher and more stable in micelles, SRP concentrations were lower in interstitial water, the contents of different forms of phosphorus and the amounts of aerobic bacteria were lower while respiration efficiency was higher in sediments. Phosphobacteria, both inorganic and organic and other microorganisms were abundant in surface water but rare in sediments. Therefore, internal phosphorus may substantially flux into water column by enzymatic hydrolysis and anaerobic release, together with mobility of bacteria, thereby initiating the bloom. In short, biological mechanism may act in concert with physical and chemical factors to drive the internal phosphorus release and accelerate lake eutrophication.
Resumo:
IEECAS SKLLQG
Resumo:
The luminescence properties of CdSio(3):RE3+ phosphors doped with various rare earth ions are reported. The series of rare earth ions doped CdSiO3 phosphors are prepared by the conventional high-temperature solid-state method, and characterized by XRD and photoluminescence (PL) spectra. The results of XRD measurement indicate that the products fired under 1050 degreesC for 3 h have a good crystallization without any detectable amount of impure phase. The PL spectra measurement results show that CdSiO3 is a novel self-activated luminescent matrix. When rare earth ions such as Y3+, La3+, Gds(3+), Lus(3+), Ce3+, Nd3+, Ho3+, Era(3+), Tm3+ and Yb3+ are introduced into the CdSi03 host, one broadband centered at about 420 nm resulted from traps can be observed. In the case of other earth ions which show emissions at the visible spectrum region, such as Pr3+, Sm3+, Eu3+, Tb3+ and Dy3+, the mixture of their characteristic line emissions with the similar to 420 nm strong broadband luminescence results in various emitting colors. As a consequence, different emitting colors can be attairied via introducing certain appropriate active ions into the CdSiO3 matrix. In additional, this kind of phosphors shows good long-lasting properties when excited by UV light. All the results show that CdSiO3 is a potential luminance matrix.
Resumo:
A series of rare earth ions doped CdSiO3:RE3+(RE=Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu) multi-color long-lasting phosphorescence phosphors are prepared by the conventional high-temperature solid-state method. The results of XRD measurement indicate that the products fired under 1050degreesC for 3 h have a good crystallization without any detectable amount of impurity phase. Rare earth ions doped CdSiO3 phosphors possess excellent luminescence properties. When rare earth ions such as Y3+, La3+, Gd3+, Lu3+, Ce3+, Nd3+, Ho3+, Er3+, Tm3+ and Yb3+ are introduced into the CdSiO3 host, one broadband centered at about 420 nm resulting from traps can be observed. In the case of other earth ions such as Pr3+, Sm3+, Eu3+, Tb3+ and Dy3+, their characteristic line emitting as well as the similar to420 nm broadband luminescence can be obtained. The mixture of their characteristic line emitting with the similar to420 nm broadband luminescence results in various afterglow color.
Resumo:
The thermophily, fishing season and central fishing ground of Japanese pilchard (Sardinops melanosticta) were studied by using satellite remote sensing (SRS) and other methods in Haizhou Bay and Tsushima waters during 1986-1990. A rapid prediction method of fishing ground is presented. Moreover, the results indicated that the thermophilic values of the fish stock are 11-20 degrees C and both fishing grounds are in increasing temperature process from the beginning to the end of the fishing period. The Japanese pilchards gather vigorously at the sea surface temperature of 15-17 degrees C. The water temperature is a key factor affecting the fishing season and the catch of the fishing ground. The increasing temperature process restricts the fishing season development and central fishing ground formation. The accuracy of 15 predictions made in the Haizhou Bay fishing ground is up to 91.3%, and 37 predictions made in the Tsushima, fishing ground shorten the fish detection time by 13.4% - 22% on the average.
Resumo:
The geochemical and U-series isotopic characteristics of hydrothermal sulfide samples from the Jade site (127A degrees 04.5'E, 27A degrees 15'N, water depth 1300-1450 m) at Jade site in the Okinawa Trough were analyzed. In the hydrothermal sulfide samples bearing sulfate (samples HOK1 and HOK2), the LREEs are relatively enriched. All the hydrothermal sulfide samples except HOK1 belong to Zn-rich hydrothermal sulfide. In comparison with Zn-rich hydrothermal sulfides from other fields, the contents of Zn, Pb, Ag, Cd, Au and Hg are higher, the contents of Fe, Al, Cr, Co, Ni, Sr, Te, Cs, Ti and U lower, and the Pb-210 radioactivity ratios and Pb-210/Pb ratios very low. In the hydrothermal sulfide mainly composed of sphalerite, the correlations between rare elements Hf and U, and Hf and Mn as well as that between dispersive elements Ga and Zn, are strongly positive; also the contents of Au and Ag are related to Fe-sulfide, because the low temperature promotes enrichment of Au and Ag. Meanwhile, the positive correlations between Fe and Bi and between Zn and Cd are not affected by the change of mineral assemblage. Based on the Pb-210/Pb ratios of hydrothermal sulfide samples (3.99x10(-5)-5.42x10(-5)), their U isotopic composition (U-238 content 1.15-2.53 ppm, U-238 activity 1.07-1.87 dpm/g, U-234 activity 1.15-2.09 dpm/g and U-234/U-238 ratio 1.07-1.14) and their Th-232 and Th-230 contents are at base level, and the chronological age of hydrothermal sulfide at Jade site in the Okinawa Trough is between 200 and 2000 yr.
Resumo:
A piston sediment core E017 from the middle-southern Okinawa Trough was investigated. A preliminary study of the deep-water evolution since 18 cal. ka BP was performed based on the quantitative census data of benthic foraminiferal fauna, together with planktonic foraminiferal oxygen and carbon isotope, AMS(14)C dating, and the previous results achieved in the southern Okinawa Trough. The result shows that the benthic fauna was dominated by Bulimina aculeata (d'Orbigny), Uvigerina peregrina (Cushman), Hispid Uvigerina and Uvigerina dirupta (Todd) during the glaciation-deglaciation before 9.2 cal. ka BP, while Epistominella exigua (Brady), Pullenia bulloides (d'Orbigny), Cibicidoides hyalina (Hofker), Sphaeroidina bulloides (d'Orbigny) and Globocassidulina subglobosa (Brady) predominated the fauna in the post-glacial period after 9.2 cal. ka BP. The benthic foraminifera accumulation rate (BFAR), paleoproductivity estimates and benthic foraminiferal assemblage conformably indicate that surface water paleoproductivity and organic matter flux during the glaciation-deglaciation were higher than those of the post-glacial period in the middle-southern Okinawa Trough, and gradually enhanced from the southern to the central Okinawa Trough during the glaciation-deglaciation, which could be caused by the discrepancy of the terrigenous nutrients supply. High abundances of E exigua, an indicator of pulsed organic matter input, after 9.2 cal. ka. BP may indicate that the intensity of seasonally riverine pulsed flux during the post-glacial period was stronger than that of the glaciation-deglaciation period, and the seasonal influx in the central trough might be stronger than in the south. The temporal distributions of the typical species indicating bottom water oxygen content and ventilation condition show that the ventilation of the bottom water during the post-glacial period is more active than the glaciation-deglaciation, which reflects that the evolution of the intermediate and deep waters of the northwestern Pacific during the last glaciation has no evident influence on the deep-water of the middle-southern Okinawa Trough. Additionally, the variations in agglutinated benthic foraminiferal abundance and other carbonate dissolution proxies indicate that carbonate dissolution gradually increased since the last 18 ka in the Okinawa Trough and rapidly enhanced at 9.2 cal. ka BP. The modern shallow carbonate lysocline could form at 3 cal. ka BP.
Resumo:
The whole rock K-Ar ages of basalts from the South China Sea basin vary from 3.8 to 7.9 Ma, which suggest that intra-plate volcanism after the cessation of spreading of the South China Sea (SCS) is comparable to that in adjacent regions around the SCS, i.e., Leiqiong Peninsula, northern margin of the SCS, Indochina block, and so on. Based on detailed petrographic studies, we selected many fresh basaltic rocks and measured their major element, trace element, and Sr-Nd-Pb isotope compositions. Geochemical characteristics of major element and trace element show that these basaltic rocks belong to alkali basalt magma series, and are similar to OIB-type basalt. The extent of partial melting of mantle rock in source region is very low, and magma may experience crystallization differentiation and cumulation during the ascent to or storing in the high-level magma chamber. Sr-Nd-Pb isotopic data of these basaltic rocks imply an inhomogeneous mantle below the South China Sea. The nature of magma origin has a two end-member mixing model, one is EM2 (Enriched Mantle 2) which may be originated from mantle plume, the other is DMM (Depleted MORB Mantle). Pb isotopic characteristics show the Dupal anomaly in the South China Sea, and combined with newly found Dupal anomaly at Gakkel ridge in Arctic Ocean, this implies that Dupal anomaly is not only limited to South Hemisphere. In variation diagrams among Sr, Nd and Pb, the origin nature of mantle below the SCS is similar to those below Leiqiong peninsula, northern margin of the SCS and Indochina peninsula, and is different from those below north and northeast China. This study provides geochemical constraints on Hainan mantle plume.
Resumo:
The mineralogical and geochemical characteristics of Fe-oxyhydroxide samples from one dredge station (long. 103 degrees 54.48'W, lat. 12 degrees 42.30'N, water depth 2655 m) on the East Pacific Rise near lat 13 degrees N were analyzed by XRD, ICP-AES, and ICP-MS. Most Fe-oxyhydroxides are amorphous, with a few sphalerite microlites. In comparison with Fe-oxyhydroxides from other fields, the variable ranges in the chemical composition of Fe-oxyhydroxide samples are very narrow; their Fe, Si, and Mn contents were 39.90%, 8.92%, and 1.59%, respectively; they have high Cu (0.88%-1.85%) and Co (65x10(-6)-704x10(-6)) contents, and contain Co+Cu+Zn+Ni > 1.01%. The trace-element (As, Co, Ni, Cu, Zn, Ba, Sr) and major-element (Fe, Ca, Al, Mg) contents of these samples are in the range of hydrothermal sulfide from the East Pacific Rise near 13 degrees N, reflecting that this type of Fe-oxyhydroxide constitutes a secondary oxidation product of hydrothermal sulfide. The Fe-oxyhydroxide samples from one dredge station on the East Pacific Rise near 13 degrees N are lower in Sigma REE (5.44x10(-6)-17.01x10(-6)), with a distinct negative Ce anomaly (0.12-0.28). The Fe-oxyhydroxide samples have similar chondrite-normalized rare-earth-element (REE) patterns to that of seawater, and they are very different from the REE composition characteristics of hydrothermal plume particles and hydrothermal fluids, showing that the REEs of Fe-oxyhydroxide are a major constituent of seawater and that the Fe-oxyhydroxides can become a sink of REE from seawater. The quick settling of hydrothermal plume particles resulted in the lower REE content and higher Mn content of these Fe-oxyhydroxides, which are captured in part of the V and P from seawater by adsorption. The Fe-oxyhydroxides from one dredge station on the East Pacific Rise near 13 degrees N were formed by secondary oxidation in a low temperature, oxygenated environment. In comparison with the elemental (Zn, Cd, Pb, Fe, Co, Cu) average content of hydrothermal sulfide samples from the East Pacific Rise near 13 degrees N, the Zn, Cd, and Pb contents of the Fe-oxyhydroxides are lower, and their Fe, Co, and Cu contents are higher.
Resumo:
Analyses of rare earth and trace element concentrations of native sulfur samples from the Kueishantao hydrothermal field were performed at the Seafloor Hydrothermal Activity Laboratory of the Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences. Using an Elan DRC II ICP-MS, and combining the sulfur isotopic compositions of native sulfur samples, we studied the sources and formation of a native sulfur chimney. The results show, when comparing them with native sulfur from crater lakes and other volcanic areas, that the native sulfur content of this chimney is very high (99.96%), the rare earth element (REE) and trace element constituents of the chimney are very low (Sigma REE < 21x10(-9)), and the chondrite-normalized REE patterns of the native sulfur samples are similar to those of the Kueishantao andesite, implying that the interaction of subseafloor fluid-andesite at the Kueishantao hydrothermal field was of short duration. The sulfur isotopic compositions of the native sulfur samples reveal that the sulfur of the chimney, from H2S and SO2, originated by magmatic degassing and that the REEs and trace elements are mostly from the Kueishantao andesite and partly from seawater. Combining these results with an analysis of the thermodynamics, it is clear that from the relatively low temperature (< 116 degrees C), the oxygenated and acidic environment is favorable for formation of this native sulfur chimney in the Kueishantao hydrothermal field.