6 resultados para [CABLE] [sbe9S] [NISKIN]

em Chinese Academy of Sciences Institutional Repositories Grid Portal


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a wide-band low noise amplifier, two mixers and a VCO with its buffers implemented in 50GHz 0.35 mu m SiGe BiCMOS technology for dual-conversion digital TV tuner front-end is presented. The LNA and up-converting mixer utilizes current injection technology to achieve high linearity. Without using inductors, the LNA achieves 0.1-1GHz wide bandwidth and 18.8-dB gain with less than 1.4-dB gain variation. The noise figure of the LNA is less than 5dB and its 1dB compression point is -2 dBm. The IIP3 of two mixers is 25-dBm. The measurement results show that the VCO has -127.27-dBc/Hz phase noise at 1-MHz offset and a linear gain of 32.4-MHz/V between 990-MHz and 1.14-GHz. The whole chip consume 253mW power with 5-V supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The wideband high-linearity mixers for a double conversion cable TV tuner is presented. The up-conversion mixer converts the input signal from 100MHz to 1000 MHz to the intermediate frequency (IF) of I GHz above. And the down-conversion mixer converts the frequency back. The degeneration resistors are used to Improve the linearity. The tuner is implemented in a 0.35 mu m SiGe technology. Input power at 1dB compression point can reach +14.23dBm. The lowest noise figure is 17.5dB. The two mixers consume 103mW under a supply voltage of 5 V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the design of a wide-band low-noise amplifier (LNA) implemented in a 0.35 mu m SiGe BiCMOS technology for cable (DVB-C) and terrestrial (DVB-T) tuner applications. The LNA utilizes current injection to achieve high linearity. Without using inductors, the LNA achieves 0.1-1GHz wide bandwidth and 18.8-dB gain with less than 1.4-dB gain variation. The noise figure(NF) of the wideband LNA is 5dB, its 1-dB compression point is -2dBm and IIP3 is 8dBm. The LNA dissipates 120mW power with a 5-V supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the design of a wide-band low-noise amplifier (LNAimplemented in 0.35μm SiGe BiCMOS technology for cable and terrestrial tuner applications. The LNA utilizes current injection to achieve high linearity. Without using inductors, the LNA achieves 0.1 ~ 1GHz wide bandwidth and 18. 8dB gain with less than 1.4dB of gain variation. The noise figure of the wideband LNA is 5dB, and its 1dB compression point is - 2dBm and IIP3 is 8dBm. The LNA dissipates 120mW of power with a 5V supply.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We analyze a wide-band,high-linearity down-conversion mixer for cable receptions that is implemented in 0. 35μm SiGe BiCMOS technology. The bandwidth of the RF (radio frequency) input covers the range from 1 to 1.8GHz. The measured input power at the - 1dB compression point of the mixer reaches + 14.23dBm. The highest voltage conversion gain is 8. 31dB, while the lowest noise figure is 19.4dB. The power consumed is 54mW with a 5V supply. The test result of the down-conversion mixer is outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamic characteristics of slender cable often present serried modes with low frequencies due to large structure flexibility resulted from high aspect ratio (ratio of length to diameter of cable), while the flow velocity distributes non-uniformly along the cable span actually in practical engineering. Therefore, the prediction of the vertex-induce vibration of slender cable suffered from multi-mode and high-mode motions becomes a challenging problem. In this paper a prediction approach based on modal energy is developed to deal with multi-mode lock-in. Then it is applied to the modified wake-oscillator model to predict the VIV displacement and stress responses of cable in non-uniform flow field. At last, illustrative examples are given of which the VIV response of flexible cable in nonlinear shear flow field is analyzed. The effects of flow velocity on VIV are explored. Our results show that both displacement and stress responses become larger as the flow velocity increasing; especially higher stress response companied with higher frequency vibration should be paid enough attention in practical design of SFT because of its remarkable influence on structure fatigue life.