185 resultados para vinyl alanates


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The performance of acrylonitrile-butadiene-styrene (ABS) core-shell modifier with different grafting degree, acrylonitrile (AN) content, and core-shell ratio in toughening of poly(butylene terephthalate) (PBT) matrix was investigated. Results show PBT/ABS blends fracture in ductile mode when the grafting degree is high, and with the decrease of grafting degree PBT/ABS blends fracture in a brittle way. The surface of rubber particles cannot be covered perfectly for ABS with low grafting degree and agglomeration will take place; on the other hand, the entanglement density between SAN and PBT matrix decreases because of the low grafting degree, inducing poor interfacial adhesion. The compatibility between PBT and ABS results from the strong inter-action between PBT and SAN copolymer and the interaction is influenced by AN content. Results show ABS cannot disperse in PBT matrix uniformly when AN content is zero and PBT/ABS fractures in a brittle way. With the addition of AN in ABS, PBT/ABS blends fracture in ductile mode. The core-shell ratio of ABS copolymers has important effect on PBT/ABS blends.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The isothermal crystallization and melting behaviors of poly(propylene carbonate) end-capped with benzenesulfonyl/poly (vinyl alcohol) (PPC-BS/PVA) blends over rich PVA composition range were first investigated by differential scanning calorimetry (DSC). PPS-BS/PVA interaction parameter, chi(12), calculated from equilibrium melting temperature depression was -0.44, revealing miscibility of PPC-BS with PVA in the melt and favorable interactions. The temperature dependence of crystallization rate constant at initial crystallization stage was analyzed using the modified Lauritzen-Hoffman expression. The chain width, a(0), the thickness of a monomolecular layer, b(0), the fold and lateral surface-free energies, sigma(e) and sigma, and the work of chain folding, q, for neat PVA were first reckoned to be 4.50 Angstrom, 4.78 Angstrom, 76.0 erg.cm(-2), and 4.70 kcal.mol(-1), respectively. The values of sigma(e) and q for PVA in PPC-BS/PVA blends exhibited a maximum in the neighborhood of 10/90 PPC-BS/PV, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new type of sol-gel-derived titanium oxide/copolymer composite material was developed and used for the construction of glucose biosensor. The composite material merged the best properties of the inorganic species, titanium oxide and the organic copolymer, poly(vinyl alcohol) grafting 4-vinylpyridine (PVA-g-PVP). The glucose oxidase entrapped in the composite matrix retained its bioactivity. Morphologies of the composite-modified electrode and the enzyme electrode were characterized with a scanning electron microscope. The dependence of the current responses on enzyme-loading and pH was studied. The response time of the biosensor was < 20 s and the linear range was up to 9 mM with a sensitivity of 405 nA/mM. The biosensor was stable for at least I month. In addition, the tetrathiafulvalene-mediated enzyme electrode was constructed for the decrease of detection potential and the effect of three common physiological sources that might interfere was also investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel type of biochemical oxygen demand (BOD) biosensor was developed for water monitor, based on co-immobilizing of Trichosporon cutaneum and Bacillus subtilis in the sol-gel derived composite material which is composed of silica and the grafting copolymer of poly (vinyl alcohol) and 4-vinylpyridine (PVA-g-P(4-VP)). Factors that influence the performance of the resulting biosensor were examined. The biodegradable substrate spectrum could be expanded by the co-immobilized microorganisms. The biosensor prepared also exhibited good reproducibility and long-term stability. Good agreement was obtained between the results of the sensor BOD measurement and those obtained from conventional BOD5 method for water samples.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glass beads were used to improve the mechanical and thermal properties of high-density polyethylene (HDPE). HDPE/glass-bead blends were prepared in a Brabender-like apparatus, and this was followed by press molding. Static tensile measurements showed that the modulus of the HDPE/glass-bead blends increased considerably with increasing glass-bead content, whereas the yield stress remained roughly unchanged at first and then decreased slowly with increasing glass-bead content. Izod impact tests at room temperature revealed that the impact strength changed very slowly with increasing glass-bead content up to a critical value; thereafter, it increased sharply with increasing glass-bead content. That is, the lzod impact strength of the blends underwent a sharp transition with increasing glass-bead content. It was calculated that the critical interparticle distance for the HDPE/glass-bead blends at room temperature (25degreesC) was 2.5 mum. Scanning electron microscopy observations indicated that the high impact strength of the HDPE/glass-bead blends resulted from the deformation of the HDPE matrix. Dynamic mechanical analyses and thermogravimetric measurements implied that the heat resistance and heat stability of the blends tended to increase considerably with increasing glass-bead content.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report capillary electrophoresis coupling to a solid-state electrochemiluminescence (ECL) detector for the first time. The solid-state ECL detector was fabricated by immobilizing the ECL reagent tris(2,2'-bipyridyf)ruthenium (TBR) in poly-(p-styrenesulfonate)-silica-poly(vinyl alcohol) grafting 4-vinylpyridine copolymer films. The excellent stability of the solid-state ECL detector in the phosphate solution satisfied application in CE. The CE with solid-state ECL detector system was characterized using tripropylamine (TPA) and proline. The influences of detection potential, the concentration of TBR in the film, and pH value of ECL buffer were investigated. The linear range for TPA and proline was 0.005-10 muM and 5-10 mM with correlation coefficients of 0.997 and 0.998, respectively. The detection limit (signal-to-noise ratio S/N = 3) was estimated to be 0.002 and 2.0 muM for TPA and proline, respectively. The relative standard deviations for 1.0 pm TPA and 1.0 mm proline were 8.7% and 7.5% with theoretical plate numbers of 70 000 and 16 000, respectively. Compared with the CE-ECL of TBR in aqueous solution, the CE coupling with solid-state ECL detector system gave the same sensitivity of analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The three scaling parameters described in Sanchez-Lacombe lattice fluid theory (SLLFT), T*, P* and rho* of pure polystyrene (PS), pure poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) and their mixtures are obtained by fitting corresponding experimental pressure volume-temperature data with equation-of-state of SLLFT. A modified combining rule in SLLFT used to match the volume per mer, v* of the PS/PPO mixtures was advanced and the enthalpy of mixing and Flory-Huggins (FH) interaction parameter were calculated using the new rule. It is found that the difference between the new rule and the old one presented by Sanchez and Lacombe is quite small in the calculation of the enthalpy of mixing and FH interaction parameter and the effect of volume-combining rule on the calculation of thermodynamic properties is much smaller than that of energy-combining rule. But the relative value of interaction parameter changes much due to the new volume-based combining rule. This effect can affect the position of phase diagram very much, which is reported elsewhere [Macromolecules 34 (2001) 6291]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the framework of lattice fluid model, the Gibbs energy and equation of state are derived by introducing the energy (E-s) stored during flow for polymer blends under shear. From the calculation of the spinodal of poly(vinyl methyl ether) (PVME) and polystyrene (PS) mixtures, we have found the influence of E., an equation of state in pure component is inappreciable, but it is appreciable in the mixture. However, the effect of E, on phase separation behavior is extremely striking. In the calculation of spinodal for the PVME/PS system, a thin, long and banana miscibility gap generated by shear is seen beside the miscibility gap with lower critical solution temperature. Meanwhile, a binodal coalescence of upper and lower miscibility gaps is occurred. The three points of the three-phase equilibrium are forecasted. The shear rate dependence of cloud point temperature at a certain composition is discussed. The calculated results are acceptable compared with the experiment values obtained by Higgins et at. However, the maximum positive shift and the minimum negative shift of cloud point temperature guessed by Higgins are not obtained, Furthermore, the combining effects of pressure and shear on spinodal shift are predicted.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The polymerized metallocene catalyst 4 was prepared by the co-polymerization of ansa-zirconocene complex [CH3Si(2)]ZrCl2 (3) containing vinyl substituted silane bridge with styrene in the presence of radical initiator. Catalyst 4 was found to display high ethylene polymerization activity of 2.28 x 10(6) g PE/(mol . h) with a viscosity average molecular weight (M-eta) value of 61.6 x 10(3) using methylalumoxane (MAO) as a co-catalyst. The ethylene polymerization has been investigated under different conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The block copolymer polystyrene-b-poly[2-(trimethylsilyloxy)ethylene methacrylate] (PSt-b-PTMSEMA) was synthesized using atom-transfer radical polymerization (ATRP). The hydrolysis of PSt-b-PTMSEMA led to the formation of an amphiphilic block copolymer, polystyrene-b-poly(2-hydroxylethyl methacrylate) (PSt-b-PHEMA), which was characterized by GPC and H-1-NMR. TEM showed that the PSt-b-PHEMA formed a micelle, which is PSt as the core and PHEMA as the shell. Under appropriate conditions, the nickel or cobalt ion cause chemical reactions in these micelles and could be reduced easily. ESCA analysis showed that before reduction the metal existed as a hydroxide; after reduction, the metal existed as an oxide, and the metal content of these materials on the surface is more than that on the surface of the copolymer metal ion. XRD analysis showed that the metal existed as a hydroxide before reduction and existed as a metal after reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we established a correlation between cavitations volume and the brittle-ductile transition (BDT) for particle toughened thermoplastics. The brittle-ductile transition temperature (T-BD) was calculated as a function of T* and interparticle distance (ED), respectively, where T* was a parameter related to the volume of cavitations. The results showed that the smaller the cavitations volume, the higher the brittle-ductile transition temperature. The calculations correlated well with the experimental data. With respect to rubber particle, the rigid particle was too hard to be voided during deformation, thereby the TED of the blend was much higher than that of rubber particle toughened thermoplastic. This was a main reason that rubber particle could toughen thermoplastics effectively, whereas rigid particle could not.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An amperometric biosensor for monitoring phenols in the organic phase was constructed by the silica sol-gel immobilization of tyrosinase on a glassy carbon electrode. The organic-inorganic hybrid materials with different sol-gel precursors and polymers were optimized, and the experimental conditions, such as the effect of the solvent, operational potential and enzyme loading were explored for the optimum analytical performance of the enzyme electrode. The biosensor can reach 95% of steady-state current in about 18 s, and the trend in the sensitivity of different phenols is as follows: catechol > phenol >p-cresol. In addition, the apparent Michaelis-Menten constants (K-m(app)) and the stability of the enzyme electrode were discussed. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An amperometric tyrosinase enzyme electrode for the determination of phenols was developed by a simple and effective immobilization method using sol-gel techniques. A grafting copolymer was introduced into sol-gel solution and the composition of the resultant organic-inorganic composite material was optimized, the tyrosinase retained its activity in the sol-gel thin film and its response to several phenol compounds was determined at 0 mV vs. Ag/AgCl (sat. KCI). The dependences of the current response on pH, oxygen level and temperature were studied, and the stability of the biosensor was also evaluated. The sensitivity of the biosensor for catechol, phenol and p-cresol was 59.6, 23.1 and 39.4 muA/mM, respectively. The enzyme electrode maintained 73% of its original activity after intermittent use for three weeks when storing in a dry state at 4 degreesC. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel amperometric biosensor for quantification of the electrochemically inert polar organic solvents based on tyrosinase electrode was preliminarily reported. The biosensor was fabricated by simply syringing an aqueous solution of tyrosinase/PVAVP (PVAVP: copolymer of poly(vinyl alcohol) grafting with 4-vinylpyridine) onto glassy carbon electrode surface followed by drying the modified electrode at +4 degrees C in a refrigerator. The current generated from electrochemical reduction of quinone is a probe signal. The biosensor can be used for quantification of polar organic solvents, and its mechanism was characterized with in situ steady-state amperometry-quartz crystal microbalance experiments. The detection limit, sensitivity, and dynamic range for certain organic solvents are dependent on the kind and concentration of the substrate probe and the hydrophobicity of the immobilization matrix. The response time for all the tested organic solvents is less than 2 min.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The graft copolymerization of butyl acrylate onto poly(vinyl alcohol) with eerie ammonium nitrate as redox initiator in a aqueous medium has been investigated. The formation of graft copolymer was confirmed by means of IR, scanning electron microscopy (SEM), and wide-angle X-ray diffraction (WAXD). The percentage of mononer conversion and percentage of grafting varied with concentrations of initiator, nitric acid, monomer, macromolecular backbone (X-n = 1750, M = 80 000), reaction temperature and reaction time. Some inorganic salts and organic solvents have a great influence upon grafting. The reaction mechanism has been explored, and rate equations for the reaction are established. (C) 2000 John Wiley & Sons, Inc.