154 resultados para cultured
Resumo:
The aim of this study was to estimate the acute effects of low dose C-12(6+) ions or X-ray radiation on human immune function. The human peripheral blood lymphocytes (HPBL) of seven healthy donors were exposed to 0.05 Gy C-12(6+) ions or X-ray radiation and cell responses were measured at 24 h after exposure. The cytotoxic activities of HPBL were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT); the percentages of T and NK cells subsets were detected by flow cytometry; mRNA expression of interleukin (IL)-2, tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma were examined by real time quantitative RT-PCR (qRT-PCR); and these cytokines protein levels in supematant of cultured cells were assayed by enzyme-linked immunosorbent assays (ELISA). The results showed that the cytotoxic activity of HPBL, mRNA expression of IL-2, IFN-gamma and TNF-alpha in HPBL and their protein levels in supernatant were significantly increased at 24 h after exposure to 0.05 Gy C-12(6+) ions radiation and the effects were stronger than observed for X-ray exposure. However, there was no significant change in the percentage of T and NK cells subsets of HPBL. These results suggested that 0.05 Gy high linear energy transfer (LET) C-12(6+) radiation was a more effective approach to host immune enhancement than that of low LET X-ray. We conclude that cytokines production might be used as sensitive indicators of acute response to LDL (C) 2009 COSPAR. Published by Elsevier Ltd. All rights reserved.
Resumo:
Mycorrhizal resource of Robinia pseudoacacia forests in different places were investigated, and the results showed that eighteen species of Ectomycorrhizal and two species of VAM were main species for the Robinia pseudoacacia. Two stains of ECM fungi and VAM fungi were cultured,and the most suitable medium and inoculated plant were selected.Through the inoculation, it is indicated that Ectomycorrhizal and VAM were able to be formed actually for Robinia pseudoacacia.
Resumo:
Linking organisms or groups of organisms to specific functions within natural environments is a fundamental challenge in microbial ecology. Advances in technology for manipulating and analyzing nucleic acids have made it possible to characterize the members of microbial communities without the intervention of laboratory culturing. Results from such studies have shown that the vast majority of soil organisms have never been cultured, highlighting the risks of culture-based approaches in community analysis. The development of culture-independent techniques for following the flow of substrates through microbial communities therefore represents an important advance. These techniques, collectively known as stable isotope probing (SIP), involve introducing a stable isotope-labeled substrate into a microbial community and following the fate of the substrate by extracting diagnostic molecular species such as fatty acids and nucleic acids from the community and determining which specific molecules have incorporated the isotope. The molecules in which the isotope label appears provide identifying information about the organism that incorporated the substrate. Stable isotope probing allows direct observations of substrate assimilation in minimally disturbed communities, and thus represents an exciting new tool for linking microbial identity and function. The use of lipids or nucleic acids as the diagnostic molecule brings different strengths and weaknesses to the experimental approach, and necessitates the use of significantly different instrumentation and analytical techniques. This short review provides an overview of the lipid and nucleic acid approaches, discusses their strengths and weaknesses, gives examples of applications in various settings, and looks at prospects for the future of SIP technology.
Resumo:
通过调节B5培养基中的组分,研究了金钩南瓜组培根在五种营养元素(P、Mg、Fe、Cu、B)四个浓度梯度(1/2 B5、B5、3/2 B52、B5)培养下化感作用的响应模式以及对黑籽和金钩南瓜两种受体幼苗生长的影响。结果表明:不同营养元素对受体植物幼苗生长的影响不一致,与元素含量显著相关,而且依赖于受体选择。五种营养元素在亏缺(1/2 B5)和正常(B5)条件下南瓜组培根过滤液对受体植物幼苗生长均表现为抑制作用;而适量增加营养元素的条件下(3/2 B5和2 B5),一般表现为促进作用,但2 B5含量下,B元素导致金钩南瓜的自毒作用,而Fe能引发金钩南瓜组培根过滤液对黑籽南瓜的抑制作用。因此理论上初步得出P和Mg元素可以降低南瓜根系的毒害作用,而Fe、Cu和B元素对南瓜根系的化感调控作用与品种选择有关,这对调控施肥、降低设施农业中葫芦科作物的连作障碍具有一定的参考意义。
Resumo:
The hydroxyapatite (HA) nanocrystals of 100-200 nm in length and 20-30 nm in width were hydrothermally synthesized by the reaction of phosphoric acid and calcium hydroxide. Lactic acid oligomer surface grafted HA(op-HA) nanoparticles were obtained by oligomeric lactic acid with a certain molecular weight grafting onto the HA surface to form a Ca carboxylate bond in the absence of any catalyst. The op-HA was further blended with poly(lactide-co-glycolide) (PLGA) to prepare the nanocomposite of op-HA/PLGA. FTIR, TGA, ESEM and EDX were used to analyze grafting reaction, the graft ratio of op-HA, surface topography and calcium deposition of the composites, respectively. The rabbit osteoblasts were seeded and cultured on the surface of composites in vitro. The cell morphology, adhesion, proliferation and gene expression were evaluated with FITC staining, NIH image J software and the analysis of real-time PCR, respectively. The results show that the graft ratio of op-HA is 8.3% (mass fraction). The op-HA/PLGA nanocomposite possessed more suitable surface properties, including roughness and plenty of calcium and phosphor. It exhibited better cell adhesion, spreading and proliferation of rabbit osteoblasts, compared to pure PLGA.
Resumo:
SiO2-CaO-P2O5 gel bioglass (BG) nanoparticles with the diameter of 40 nm were synthesized by sol-gel approach. The surface of BG nanoparticles was grafted through the ring-open polymerization of the L-lactide to yield poly (L-lactide) (PLLA) grafted gel particle (PLLA-g-BG). The PLLA-g-BG was further blended with poly(lactide-co-glycolide) (PLGA) to prepare the nanocomposites of PLLA-g-BG/PLGA with the various blend ratios of two phases. PLLA-g-BG accounted 10%, 20% and 40% in the composite, respectively. TGA, ESEM and EDX were used to analyze the graft ratio of PLLA-g-BG, the dispersion of nano-particles and the surface elements of the composites respectively. The rabbit osteoblasts were seeded and cultured on the thin films of composites in vitro. The cell adhesion, spreading and growth of osteoblasts were analyzed with FITC staining, NIH Image J software and MTT assay. The change of cell cycle was monitored by flow cytometry (FCM). The results demonstrated that the Surface modification of BG with PLLA could significantly improve the dispersing of the particles in the matrix of PLGA. The nanocomposite with 20% PLLA-g-BG exhibited superior surface properties, including roughness and plenty of silicon, calcium and phosper, to enhance the adhesion, spreading and proliferation of osteoblasts.
Resumo:
In this study, we describe composite scaffolds composed of synthetic and natural materials with physicochemical properties suitable for tissue engineering applications. Fibrous scaffolds were co-electrospun from a blend of a synthetic biodegradable polymer (poly(lactic-co-glycolic acid), PLGA, 10% solution) and two natural proteins, gelatin (denatured collagen, 8% solution) and (x-elastin (20% solution) at ratios of 3:1:2 and 2:2:2 (v/v/v). The resulting PLGA-gelatin-elastin (PGE) fibers were homogeneous in appearance with an average diameter of 380 80 mn, which was considerably smaller than fibers made under identical conditions from the starting materials (PLGA, 780 +/- 200 nm; gelatin, 447 +/- 1.23 nm; elastin, 1060 170 nm). Upon hydration, PGE fibers swelled to an average fiber diameter of 963 +/- 132 nm, but did not disintegrate. Importantly, PGE scaffolds were stable in an aqueous environment without crosslinking, and were more elastic than those made of pure elastin fibers. To investigate the cytocompatibility of PGE, we cultured H9c2 rat cardiac myoblasts and rat bone marrow stromal cells (BMSCs) on fibrous PGE scaffolds. We found that myoblasts grew equally as well or slightly better on the scaffolds than on tissue-culture plastic. Microscopic evaluation confirmed that myoblasts reached confluence on the scaffold surfaces while simultaneously growing into the scaffolds.
Resumo:
beta-Adrenoceptors(beta-ARs) play a critical role in regulating cardiac functions under both physiological and pathological conditions. To further explore the mechanisms through which beta-ARs perform its actions, proteomic approaches were adopted to study the global protein patterns in cultured neonatal rat cardiomyocytes exposed to isoproterenol (ISO). A modified method, "Mirror Images in One Gel", was used to improve the reproducibility and resolution power of two-dimensional electrophoresis. A 2-DE map with a good reproducibility was obtained in which 1281 70 spots were detected and about 1191 +/- 54 spots were matched, with an average matching rate of 92.9%. Nine proteins with significant changes were identified by using peptide mass fingerprinting(PMF) data obtained via MALDI-MS.
Resumo:
A method of capillary HPLC-high-resolution MS was developed for the trace analysis of ATP, GTP, dATP and dGTP Dimethylhexylamine (DMHA) was used as ion-pairing agent for the HPLC retention and separation of the nucleotides and positive ion electrospray time-of-flight MS was used for the detection. The application of capillary HPLC allowed minimal usage of DMHA while providing excellent peak retention and resolution, which significantly reduced the ion suppression in electrospray ionization-MS analysis and thus increased the sensitivity. Adduct ions of nucleotides and DMHA were used as quantitative ions in order to achieve the best sensitivity. DMHA concentration at 5 mM in the aqueous mobile phase at pH 7 was found to be the optimal conditions for the C Is capillary column. The method was applied to determine ATP level in cultured C6 glioma cells that were treated with toxic concentrations of Zn. The results showed that the cellular ATP level decreased from 2.7 pmol/cell (<10% cell death) in average control cell samples to 0.36 pmol/cell as the concentration of Zn increased to 120 mg/l (>35% cell death) in culture medium.
Resumo:
The fluorescences of BSA and glycosylated BSA were observed respectively. The lambda(cm) of BSA was 340 nm; while the lambda(cm) of glycosylated BSA was 436 nm. Because the fluorescence spectra of them were different greatly, we can observe the suppression of Ge-132 on the Maillard reaction of BSA without any interference of itself. It was showed that the fluorescence intensity of glycosylated BSA increased continuously with the cultured time, Ge-132 may suppress the Maillard reaction of BSA greatly, and the suppressing efficicency would be 32 %. The key site of the Maillard reaction of BSA is free amino groups of alanine residues on N-terminal amino group, besides the epsilon-amino groups of intrachain Lysine residues.
Resumo:
Aim: To investigate the effect of copper on the virulence of Edwardsiella tarda. Methods and Results: The pathogenic Edw. tarda strain TX5 was cultured under copper-stressed conditions and examined for any potential alteration in capacities that are associated with pathogenicity. The results showed that compared to untreated TX5, Cu-treated TX5 exhibits reduced planktonic and biofilm growth, an impaired ability to adhere to host mucus, modulation of host immune response, and dissemination in host blood and liver. Consistent with these observations, the overall bacterial virulence of Cu-treated TX5 is significantly attenuated. SDS-PAGE analyses of whole cell protein production showed that Cu-treated TX5 differs from the untreated TX5 in its production of at least one protein. Quantitative real time reverse transcriptase PCR analyses showed that copper treatment decreased the expression of virulence-associated genes encoding components of the type III and type VI secretion systems, the Eth haemolysin system, and the LuxS/AI-2 quorum-sensing system. Conclusions: Prolonged exposure to copper has multiple effects on TX5 and results in significant attenuation of bacterial virulence. Significance and Impact of the Study: The results of this study demonstrate that copper treatment has a broad and profound effect on the virulence-associated capacities of TX5, which is exerted at least in part at the transcription level. These findings provide new insights to the antimicrobial mechanism of copper.
Resumo:
A gene, pfa1, encoding an autotransporter was cloned from a pathogenic Pseudomonas fluorescens strain, TSS, isolated from diseased fish. The expression of pfa1 is enhanced during infection and is regulated by growth phase and growth conditions. Mutation of pfa1 significantly attenuates the overall bacterial virulence of TSS and impairs the abilities of TSS in biofilm production, interaction with host cells, modulation of host immune responses, and dissemination in host blood. The putative protein encoded by pfa1 is 1,242 amino acids in length and characterized by the presence of three functional domains that are typical for autotransporters. The passenger domain of PfaI contains a putative serine protease (Pap) that exhibits apparent proteolytic activity when expressed in and purified from Escherichia coli as a recombinant protein. Consistent with the important role played by PfaI in bacterial virulence, purified recombinant Pap has a profound cytotoxic effect on cultured fish cells. Enzymatic analysis showed that recombinant Pap is relatively heat stable and has an optimal temperature and pH of 50 degrees C and pH 8.0. The domains of PfaI that are essential to autotransporting activity were localized, and on the basis of this, a PfaI-based autodisplay system (named AT1) was engineered to facilitate the insertion and transport of heterologous proteins. When expressed in E. coli, AT1 was able to deliver an integrated Edwardsiella tarda immunogen (Et18) onto the surface of bacterial cells. Compared to purified recombinant Et18, Et18 displayed by E. coli via AT1 induced significantly enhanced immunoprotection.
Resumo:
The population of Undaria pinnatifida in its ecologic niche sustains itself in high temperature summer in the form of vegetative gametophytes, the haploid stage in its heteromorphic life cycle. Gametogenesis initiates when seawater temperature drops below the threshold levels in autumn in the northern hemisphere. Given that the temperature may fall into the appropriate range for gametogenesis, the level of irradiance determines the final destiny of a gametophytic cell, either undergoing vegetative cell division or initiating gametogenesis. In elucidating how vegetatively propagated gametophytes cope with changes of irradiance in gametogenesis, we carried out a series of culture experiments and found that a direct exposure to irradiance as high as 270 mu mol photons m(-2) s(-1) was lethal to dim-light (7-10 mu mol photons m(-2) s(-1)) adapted male and female gametophytes. This lethal effect was linearly corelated with the exposure time. However, dim-light adapted vegetative gametophytes were shown to be able tolerate as high as 420 mu mol photons m(-2) s(-1) if the irradiance was steadily increased from dim light levels (7-10 mu mol photons m(-2) s(-1)) to 90, 180 and finally 420 mu mol photons m(-2) s(-1), respectively, at a minimum of 1-3 h intervals. Percentage of female gametophytic cells that turned into oogonia and were eventually fertilized was significantly higher if cultured at higher but not lethal irradiances. Findings of this investigation help to understand the dynamic changes of population size of sporophytic plants under different light climates at different site-specific ecologic niches. It may help to establish specific technical details of manipulation of light during mass production of seedlings by use of vegetatively propagated gametophytes.
Resumo:
The bay scallop (Argopecten irradians irradians Lamarck 1819) has become one of the most important aquaculture species in China. Genetic improvement of cultured bay scallop can benefit greatly from a better understanding of its genome. In this study, we developed amplified fragment length polymorphisms (AFLPs) and simple sequence repeat markers from expressed sequence tags (EST-SSRs) for linkage analysis in bay scallop. Segregation of 390 AFLP and eight SSR markers was analysed in a mapping population of 97 progeny. Of the AFLP markers analysed, 326 segregated in the expected 1:1 Mendelian ratio, while the remaining 74 (or 19.0%) showed significant deviation, with 33 (44.6%) being deficient in heterozygotes (A/a). Among the eight polymorphic EST-SSR loci, one marker (12.5%) was found skewing from its expected Mendelian ratios. Eighteen per cent of the markers segregating from female parent were distorted compared with 21% of the markers segregating from male parent. The female map included 147 markers in 17 linkage groups (LGs) and covered 1892.4 cM of the genome. In the male map, totally 146 AFLP and SSR markers were grouped in 18 LGs spanning 1937.1 cM. The average inter-marker spacing in female and male map was 12.9 and 13.3 cM respectively. The AFLP and SSR markers were distributed evenly throughout the genome except for a few large gaps over 20 cM. Although preliminary, the genetic maps presented here provide a starting point for the mapping of the bay scallop genome.
Resumo:
Accumulations of selenium in kelp Laminaria japonica cultured in seawater was achieved by adding selenite (Na2SeO3) with or without N-P (NaNO3 + NaH2PO4) nutrients at different concentrations. Biotransformation of selenium in the kelp was investigated through measuring the selenium of biological samples and different biochemical fractionations. The results showed that the optimal selenite-enrichment concentration is 200 mg L-1, which can allow the kelp to accumulate a total selenium content from 0.51 +/- 0.15 to 26.23 +/- 3.12 mug g(-1) of fresh weight (fw). Selenium composition analysis of kelp (control group) showed that selenium is present as organic selenium, which is up to 86.22% of the total selenium, whereas inorganic selenium is barely 4.85%. When L. japonica was exposed for 56 h in seawater containing 200 mg L-1 Na2SeO3, the organic selenium was 16.70 mug g(-1) of fw (68.23%) and inorganic selenium was 4.71 mug g(-1) of fw (19.26%). The capability of accumulation of selenium was further enhanced by adding N-P nutrients to the selenite-enriched medium. Total selenium is increased to be 33.65 mug g(-1) of fw at optimal concentration of N-P nutrient (150 mg L-1 NaNO3 and 25 mg L-1 NaH2PO4), whereas the inorganic selenium was not increased and remained at 4.597 mug g(-1) of fw (13.36%), and the increased part of selenium was organic selenium. This implied that kelp L. japonica could effectively transform inorganic selenium into organic selenium through metabolism.