237 resultados para ceramic membranes
Resumo:
The sulphonated phenol novolac (PNBS) which was used as a curing agent of epoxy was synthesised from phenol novolac (PN) and 1,4-butane sultone and confirmed by FTIR and H-1 NMR. The degree of sulphonation (DS) in PNBS was calculated by H-1 NMR. The semi-IPN membranes composed of sulphonated tetramethyl poly(ether ether ketone) (STMPEEK) (the value of ion exchange capacity is 2.01 meq g(-1)), epoxy (TMBP) and PNBS were successfully prepared. The semi-IPN membranes showed high thermal properties which were measured by differential scanning calorimeter (DSC) and thermogravimetric analysis (TGA) With the introduction of the corss-linked TMBP/PNBS, the mechanical properties, dimensional stability, methanol resistance and oxidative stability of the membranes were improve in comparison to the pristine STMPEEK membrane.
Resumo:
A series of cost-effective, proton-conducting composite membranes, comprising of Nafion (R) ionomer, chitosan (CS). and polyvinyl alcohol (PVA), is successfully prepared. By taking advantage of the strong electrostatic interactions between Nafion (R) ionomer and CS component, Nafion ionomer is effectively implanted into the PVA/CS composite membranes, and improves proton conductivity of the PVA/CS composite membranes. Furthermore, this effect dramatically depends on the composition ratio of PVA/CS, and the optimum conductivity is obtained at the PVA/CS ratio of 1:1. The developed composite membranes exhibit much lower methanol permeability compared with the widely used Nafion (R) membrane, indicating that these novel membranes have great potential for direct methanol fuel cells (DMFCs).
Resumo:
Layer-by-layer (LBL) self-assembly is a simple and elegant method of constructing organic-inorganic composite thin films from environmentally benign aqueous solutions. In this paper, we utilize this method to develop proton-exchange membranes for fuel cells. The multilayer film is constructed onto the surface of sulfonated poly(arylene ether ketone) (SPAEK-COOH) membrane by LBL self-assembly of polycation chitosan (CTS) and negatively charged inorganic particle phosphotungstic acid (VIA). The highly conductive inorganic nanoparticles ensure SPAEK-COOH-(CTS/PTA)(n) membranes to maintain high proton conductivity values up to 0.086 S cm(-1) at 25 degrees C and 0.24S cm(-1) at 80 degrees C, which are superior than previous LBL assembled electrolyte systems.
Resumo:
A novel strategy in which the benzimidazole group and sulfonic group are simultaneously attached to an aromatic polymer has been reported in this paper. For this purpose, sulfonated poly(arylene ether ketone) copolymers containing carboxylic acid groups (SPAEK-x-COOH, x refers to the molar percentage Of sulfonated repeating units) are prepared by the aromatic nucleophilic polycondensation of sodium 5,5'-carbonyl-bis(2-fluobenzene-sulfonate) (SDFBP), 4,4'-difluorobenzophenone (DFBP) and phenolphthalin (PPL). Then the carboxylic acid groups attached to the SPAEK-x-COOH are transformed to benzimidazole units through condensation reactions (referred to as SPAEK-x-BI). Fourier transform infrared spectroscopy and H-1 NMR measurements are used to characterize and confirm the structures of these copolymers.
Resumo:
A series of novel side-chain-type sulfonated poly(arylene ether ketone)s with pendant carboxylic acid groups copolymers (C-SPAEKs) were synthesized by direct copolymerization of sodium 5,5'-carbonyl-bis(2-fluorobenzenesulfonate), 4,4'-difluorobenzophenone and 4,4'-bis(4-hydroxyphenyl) valeric acid (DPA). The expected structure of the sulfonated copolymers was confirmed by FT-IR and H-1 NMR. Membranes with good thermal and mechanical stability could be obtained by solvent cast process. It should be noted that the proton conductivity of these copolymers with high sulfonation degree (DS > 0.6) was higher than 0.03 S cm(-1) and increased with increasing temperature. At 80 degrees C, the conductivity of C-SPAEK-3 (DS = 0.6) and C-SPAEK-4 (DS = 0.8) reached up to 0.12 and 0.16 S cm-1, respectively, which were higher than that of Nafion 117 (0.10 S cm(-1)).
Resumo:
Double-ceramic-layer(DCL) thermal barrier coatings (TBCs) of La2Zr2O7 (LZ) and yttria stabilized zirconia (YSZ) were deposited by electron beam-physical vapor deposition (EB-PVD). The composition, crystal structure, surface and cross-sectional morphologies and cyclic oxidation behavior of the DCL coating were studied. Both the X-ray diffraction (XRD) and thermogravimetric-differential thermal analysis (TG-DTA) prove that LZ and YSZ have good chemical applicability to form a DCL coating. The thermal cycling test at 1373 K in an air furnace indicates the DCL coating has a much longer lifetime than the single layer LZ coating. and even longer than that of the single layer YSZ coating. The failure of the DCL coating is a result of both the bond coat oxidation and the thermal strain between bond coat and ceramic layer generated by the thermal expansion mismatch.
Resumo:
As inorganic proton conductors. phosphomolybdic acid (PMA), phosphotungstic acid (PWA) and silicotungstic acid (SiWA) are extremely attractive for proton-conducting composite membranes. An interesting phenomenon has been found in our previous experiments that the mixing of chitosan (CS) solution and different heteropolyacids (HPAs) leads to strong electrostatic interaction to form insoluble complexes. These complexes in the form of membrane (CS/PMA, CS/PWA and CS/SiWA composite membranes) have been prepared and evaluated as novel proton-conducting membranes for direct methanol fuel cells. Therefore, HPAs can be immobilized within the membranes through electrostatic interaction, which overcomes the leakage problem from membranes.
Resumo:
SiO2-CaO-P2O5 ternary bioactive glass ceramic nanoparticles were prepared via the combination of sol-gel and coprecipitation processes. Precursors of silicon and calcium were hydrolyzed in acidic solution and gelated in alkaline condition together with ammonium dibasic phosphate. Gel particles were separated by centrifugation, followed by freeze drying, and calcination procedure to obtain the bioactive glass ceramic nanoparticles. The investigation of the influence of synthesis temperature on the nanopartilce's properties showed that the reaction temperature played an important role in the crystallinity of nanoparticle. The glass ceramic particles synthesized at 55 degrees C included about 15% crystalline phase, while at 25 degrees C and 40 degrees C the entire amorphous nanopowder could be obtained.
Resumo:
The sol-gel-derived ceramic-carbon nanotube (SGCCN) nanocomposite film fabricated by doping multiwall carbon nanotubes (MWNTs) into a silicate get matrix was used to immobilize protein. The SGCCN film can provide a favorable microenvironment for horseradish peroxidase (HRP) to perform direct electron transfer (DET) at glassy carbon electrode. The HRP immobilized in the SGCCN film shows a pair of well-defined redox waves and retains its bioelectrocatalytic activity to the reduction of O-2 and H2O2, which is superior to that immobilized in silica sol-gel film.
Resumo:
Two novel of tri- and tetra-functional biphenyl acid chloride: 3,4',5-biphenyl triacyl chloride (BTRC) and 3,3',5,5'-biphenyl tetraacyl chloride (BTEC), were synthesized, and used as new monomers for the preparations of the thin film composite (TFC) reverse osmosis (RO) membranes. The TFC RO membranes were prepared on a polysulfone supporting film through interfacial polymerization with the two new monomers and m-phenylenediamine (MPD). The membranes were characterized for the permeation properties, chemical composition, d-space between polymer chains, hydrophilicity, membrane morphology including top surface and cross-section. Permeation experiment was employed to evaluate the membranes performance including salt rejection and water flux. The surface structure and chemical composition of membranes were analyzed by attenuated total reflectance infrared (ATR-IR) and X-ray photoelectronic spectroscopy (XPS). The results revealed that the active layer of membranes was composed of highly cross-linked aromatic polyamide with the functional acylamide (-CONH-) bonds. The TFC membranes prepared from biphenyl acid chloride exhibit higher salt rejection compared with that prepared from trimesoyl chloride (TMC) at the expanse of some flux.
Resumo:
A novel wholly aromatic diamine, 2,2 '-bis(3-sulfobenzoyl)benzidine (2,2 '-BSBB), was successfully prepared by the reaction of 2,2 '-dibenzoylbenzidine (2,2 '-DBB) with fuming sulfuric acid. Copolymerization of 1,4,5,8-naphathlenetetracarboxylic dianhydride with 2,2 '-BSBB and 2,2 '-DBB generated a series of rigid-rod sulfonated polyimides. The synthesized copolymers with the -SO3H group on the side chain of polymers possessed high molecular weights revealed by their high viscosity and the formation of tough and flexible membranes. The copolymer membranes exhibited excellent oxidative stability and mechanical properties due to their fully aromatic structure extending through the backbone and pendent groups. They displayed clear anisotropic membrane swelling in water with negligibly small dimensional changes in the plane direction of the membrane. The proton conductivities of copolymer membranes increased with increasing IEC and temperature, reaching value above 1.25 x 10(-1) S/cm at 20 degrees C, which is higher than that of Nafion (R) 117 at the same measurement condition. They displayed reasonably high proton conductivity due to the higher acidity of benzoyl sulfonic acid group, the larger interchain spacing, which is available for water to occupy, taking their lower water uptake (WU) into account. Consequently, these materials proved to be promising as proton exchange membrane.
Resumo:
A series of sulfonated polymides containing benzimidazole groups were synthesized using 4,4'-binaphthyl-1,1',8,8'-tetracarboxylic dianhydride (BTDA), 4,4'-diaminodiphenyl ether-2,2'-disulfonic acid (ODADS) as the sulfonated diamine, and 2-(3',5-diaminophenyl)benzimidazole (a) or 6,4'-diamino-2-phenylbenzimidazole (b) as the nonsulfortated diamine. The electrolyte properties of the synthesized polyimides Ia-x, Ib-x, x refers to molar percentage of the sulfonated diamine) were investigated and compared with those of polyimides (Ic-x) from BTDA, ODADS, and m-phenylenediamine (c). All synthesized polyimides possessed high molecular weights revealed by their high viscosity, and formation of tough and flexible membranes. Polyintides with benzimidazole groups exhibited much better swelling capacity than those without benzimiclazole groups. This was attributed to the strong interchain interaction through basic benzimidazole functions and sulfonic acid groups. The sulfortated polyimides that are incorporated with 1, 1',8,8'-binaphthalimide exhibited better hydrolytic stability than that with 1,4,5,8-naphthalimide. Polyimide membranes with good water stability as well as high proton conductivity were developed. Polyimide membrane (Ia - 90), for example, did not lose mechanical properties after being soaked in boiling water for tOOO h, while its proton conductivity was still at a high level (compared to that of Nafion 117).
Resumo:
Electrospinning was employed to fabricate polymer-ceramic composite fibers from solutions containing poly(vinyl pyrrolidone) (PVP), Ce(NO3)(3)(.)6H(2)O and ZrOCl2-8H(2)O. Upon firing the composite fibers at 1000 degrees C, Ce(0.67)Zr(0.33)O(2)fibers with diameters ranging from 0.4 to 2 mu m were synthesized. These fibers exhibit strong resistance to sintering. They still have specific surface area around 11.8 m(2)/g after being heated at 1000 degrees C for 6 h.