155 resultados para Transformation landscape
Resumo:
We propose a new approach to study the diffusion dynamics on biomolecular interface binding energy landscape. The resulting mean first passage time (MFPT) has 'U'curve dependence on the temperature. It is shown that the large specificity ratio of gap to roughness of the underlying binding energy landscape not only guarantees the thermodynamic stability and the specificity [P.A. Rejto, G.M. Verkhivker, in: Proc. Natl. Acad. Sci. 93 (1996) 8945; C.J. Tsai, S. Kumar, B. Ma, R. Nussinov, Protein Sci. 8 (1999) 1181; G.A. Papoian, P.G. Wolynes, Biopolymers 68 (2003) 333; J. Wang, G.M. Verkhivker, Phys. Rev. Lett. 90 (2003) 198101] but also the kinetic accessibility. The complex kinetics and the associated fluctuations reflecting the structures of the binding energy landscape emerge upon temperature changes. The theory suggests a way of connecting the models/simulations with single molecule experiments by analysing the kinetic trajectories.
Resumo:
The phase-transformation in sol-gel preparation of barium hexaferrite and the formation of barium hexaferrite doped with La3+ Were studied by chemical phase analysis, X-ray diffraction and infrared spectrometry analysis. The experimental results show that phase transformation reactions of FeCO3, Fe2O3 and BaFe2O4, barium hexaferrite and gamma-Fe2O3 take place in the heat treatment of gel. While the doping lanthanide ion replace barium ion, an equivalent quantity of Fe3+ are reduced to Fe2+ to maintain the charge equilibrium.
Resumo:
We study the nature of biomolecular binding. We found that in general there exists several thermodynamic phases: a native binding phase, a non-native phase, and a glass or local trapping phase. The quantitative optimal criterion for the binding specificity is found to be the maximization of the ratio of the binding transition temperature versus the trapping transition temperature, or equivalently the ratio of the energy gap of binding between the native state and the average non-native states versus the dispersion or variance of the non-native states. This leads to a funneled binding energy landscape.
Resumo:
We study the dynamics of protein folding via statistical energy-landscape theory. In particular, we concentrate on the local-connectivity case with the folding progress described by the fraction of native conformations. We found that the first passage-time (FPT) distribution undergoes a dynamic transition at a temperature below which the FPT distribution develops a power-law tail, a signature of the intermittent nonexponential kinetic phenomena for the folding dynamics. Possible applications to single-molecule dynamics experiments are discussed.
Resumo:
alpha Form Nylon 11 films were found to exist a non-linear transformation at 70 degrees C during the heating process using in situ WAXD. The alpha Form disappeared but delta Form appeared when the temperature was higher 70 degrees C.
Resumo:
Surfactant adsorption on metal surfaces has been used to limit the activity of the electrode surface and to stabilize colloidal clusters and nanoparticles in solution, but the adsorption and relative potential-induced structure change of the surfactant were not known. Here, the adsorption of sodium dodecyl sulfate (SDS) on a Au(111) surface under potential control was investigated by in situ scanning tunneling microscopy (STM). The STM images showed that the morphology of SDS on Au(111) was changed from a hemi-cylindrical micellar monolayer to a compact and uniform bilayer through control of the potential. The transition between the hemimicellar monolayer and the compact bilayer is not reversed after a period of time. The model of potential-induced transformation for SDS aggregates on Au(111) was established. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
The crystallization and phase transformation of amorphous Si3N4 ceramics under high pressure (1.0-5.0 GPa) between 800 and 1700 degreesC were investigated. A greatly enhanced crystallization and alpha-beta transformation of the amorphous Si3N4 ceramics were evident under the high pressure, as characterized by that, at 5.0 GPa, the amorphous Si3N4, began to crystallize at a temperature as low as 1000 degreesC (to transform to alpha modification). The subsequent alpha-beta transformation occurred completed between 1350 and 1420 degreesC after only 20 min of pressing at 5.0 GPa. In contrast, under 0.1 MPa N-2, the identical amorphous materials were stable up to 1400 degreesC without detectable crystallization, and only a small amount of a phase was detected at 1500 degreesC. The crystallization temperature and the alpha-beta transformation temperatures are reduced by 200-350 degreesC compared to that at normal pressure. The enhanced phase transformations of the amorphous Si3N4, were discussed on the basis of thermodynamic and kinetic consideration of the effects of pressure on nucleation and growth.
Resumo:
Conformation transformation of syndiotactic polypropylene(sPP) induced by stretching and annealing processes has been investigated by WAXD, IR and DSC, The results indicate that not only the quenched samples but also the isothermally crystallized samples can form the crystals with all-trans conformation by means of uniaxially stretching at room temperature. The all-trans conformation crystals are of metastability, which can transform to stable crystals with (TTGG)(2) helical conformation at higher annealing temperatures.
Resumo:
By mechanism-transformation (anionic --> cationic) poly(styrene-6-2-ethyl-2-oxazoline) diblock copolymer, PS-b-PEOx, was synthesized in two steps. The first step is the polymerization of styrene block capped with ethylene oxide and its tosylation; the second step is the cationic ring-opening polymerization of 2-ethyl-2-oxazoline. The products were thoroughly characterized by various methods, such as H-1-NMR, IR, DMA, TEM and SAXS. The results show that the copolymer obtained possesses high molecular weight and narrow molecular weight distribution.