188 resultados para Superconducting transition temperature


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The blends of low molecular weight triacetin (TAC) and oligomeric poly(1,3-butylene glycol adipate) (PBGA) were used as multiple plasticizers to lubricate poly(lactic acid) (PLA) in this study. The thermal and mechanical properties of plasticized polymers were investigated by means of dynamic mechanical analysis and differential scanning calorimetry. Atomic force microscopy (AFM) was used to analyze the morphologies of the blends. Multiple plasticizers were effective in lowering the glass transition temperature (T-g) and the melting temperature (T-m) of PLA. Moreover, crystallinity of PLA increased with increasing the con-tent of multiple plasticizers. Tensile strength of the blends decreased following the increasing of the plasticizers, but increased in elongation at break. AFM topographic images showed that the multiple plasticizers dispersed between interfibrillar regions. Moreover, the fibrillar crystallite formed the quasicrosslinkings, which is another cause for the increase in elongation at break.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The functional polystyrene, (Cl-PS)(2)-CHCOOCH2CH2OH ( designated as XPSt and coded P2) was prepared by ATRP at 130(0)C using CuCl and bipyridine as catalysts, 2,2-dichloro acetate-ethylene glycol (DCAG) as multifunctional initiator and THF as solvent. 4-Nitoroaniline azomethine-4' phenol (P1) as chromophores were covalently linked to the functional end groups of the polymer by using simple displacement reaction. The functional polystyrenes, namely XPSt (P2) and (PS)(2)-CHCOOCH2CH2OH, designated as X-PSt and coded P3 and their post-derivatives, namely, DXPSt (P4) and DX-PSt (P5) respectively were characterized by IR, NMR and UV spectroscopies, gel permeation chromatography (GPC) and thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC), polarising optical microscopy (POM) and XRD studies. DSC showed that incorporation of chromophores in the side chains of polymers towards the polystyrene moiety increases the rigidity of the polymer and subsequently, its glass transition temperature; however the incorporation of side chain towards the alcoholic functional group decreases the glass transition temperature. The post derivatives do not play any significant role to increase the thermal stability ( TGA).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The ordered double perovskites, Sr2-xLaxMnMoO6, were prepared by sol-gel reaction. Structural, magnetic, and electrical properties were investigated for a series of ordered double perovskites Sr2-xLaxMnMoO6(0 <= x <= 1). The compounds have a monoclinic structure (space group P2(1)/n) and the cell volume expands monotonically with La doping. The T-C and the magnetic moment rise and the cusp-like transition temperature below which the magnetic frustration occurs shifts to high temperature as x increases. With La doping, electrical resistivity of Sr2-xLaxMnMoO6 decreases only at low doping levels (x <= 0.2); while at high doping levels (0.8 <= x <= 1), electrical resistivity tends to increase greatly. The results suggest that the competition between band filling effect and steric effect coexists in the whole doping range, and the formation of ferrimagnetic interactions is not simply at the expense of antiferromagnetic interactions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polypropylene/montmorillonite (PP/MMT) nanocomposites were prepared by in-situ polymerization using a MMT/MgCl2/TiCl4-EB Ziegler-Natta catalyst activated by trietbylaluminum (TEA). The enlarged layer spacing of MMT was confirmed by X-ray wide angle diffraction (WAXD), demonstrating that MMT were intercalated by the catalyst components. X-ray photoelectron spectrometry (XPS) analysis proved that TiCl4 was mainly supported on MgCl2 instead of on the surface of MMT The exfoliated structure of MMT layers in the PP matrix of PP/MMT composites was demonstrated by WAXD patterns and transmission electron microscopy (TEM) observation. The higher glass transition temperature and higher storage modulus of the PP/MMT composites in comparison with pure PP were revealed by dynamic mechanical analysis (DMA).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the nature of biomolecular binding. We found that in general there exists several thermodynamic phases: a native binding phase, a non-native phase, and a glass or local trapping phase. The quantitative optimal criterion for the binding specificity is found to be the maximization of the ratio of the binding transition temperature versus the trapping transition temperature, or equivalently the ratio of the energy gap of binding between the native state and the average non-native states versus the dispersion or variance of the non-native states. This leads to a funneled binding energy landscape.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A series of polyimides (PIs) based on 2,3,3',4'-benzophenonetetracarboxylic dianhydride (2,3,3',4'-BTDA) and 3,3',4,4'-BTDA were prepared by the conventional two-step process. The properties of the 2,3,3',4'-BTDA based polyimides were compared with those of polyimides prepared from 3,3',4,4'-BTDA. It was found that PIs from 2,3,3,4'-BTDA have higher glass transition temperature and better solubility without sacrificing their thermal properties. Furthermore the theological properties of PMR-15 type polyimide resins based on 2,3,3',4'-BTDA showed lower melt viscosity and wider melt flow region (flow window) compared with those from 3,3',4,4'-BTDA. The structure-property relations resulted from isomerism were discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The miscibility and hydrogen-bonding interactions of carbon dioxide and epoxy propane copolymer to poly(propylene carbonate) (PPC)/poly(p-vinylphenol) (PVPh) blends were investigated with differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The single glass-transition temperature for each composition showed miscibility over the entire composition range. FTIR indicates the presence of strong hydrogen-bonding interassociation between the hydroxyl groups of PVPh and the oxygen functional groups of PPC as a function of composition and temperature. XPS results testify to intermolecular hydrogen-bonding interactions between the oxygen atoms of carbon-oxygen single bonds and carbon-oxygen double bonds in carbonate groups of PPC and the hydroxyl groups of PVPh by the shift of C-1s peaks and the evolution of three novel O-1s peaks in the blends, which supports the suggestion from FTIR analyses.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new series of network liquid crystal polymers were synthesized by graft copolymerization of the difunctional mesogenic monomer 4-allyloxy-benzoyloxy-4'-allyloxybiphenyl (M) upon polymethylhydrosiloxane (PMHS). Monomer M acted not only as a mesogenic unit but also as a crosslinker for the network polymers. The chemical structures of the polymers were confirmed by IR spectroscopy. DSC, TGA, and X-ray scattering were used to measure their thermal properties and mesogenic properties. The glass transition temperature (T-g) of these network liquid crystal polymers was increased when the monomer was increased, and T-d (temperature of 5% weight loss) at first went up and reached a maximum at P, then went down. The slightly crosslinked polymers (P, P,) show rubber-like elasticity, so it was called liquid-crystal elastomer. Network polymers will lose elasticity property with a highly crosslinked degree, and turn into thermosetting polymers (P-4, P-5). All polymers exhibited a smectic texture by X-ray scattering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Transparent poly(ethyl acrylate) (PEA)/bentonite nanocomposites containing intercalated-exfoliated combinatory structures of clay were synthesized by in situ emulsion polymerizations in aqueous dispersions containing bentonite. The samples for characterization were prepared through direct-forming films of the resulting emulsions without coagulation and separation. An examination with X-ray diffraction and transmission electron microscopy showed that intercalated and exfoliated structures of clay coexisted in the PEA/bentonite nanocomposites. The measurements of mechanical properties showed that PEA properties were greatly improved, with the tensile strength and modulus increasing from 0.65 and 0.24 to 11.16 and 88.41 MPa, respectively. Dynamic mechanical analysis revealed a very marked improvement of the storage modulus above the glass-transition temperature. In addition, because of the uniform dispersion of silicate layers in the PEA matrix, the barrier properties of the materials were dramatically improved. The permeability coefficient of water vapor decreased from 30.8 x 10(-6) to 8.3 x 10(-6) g cm/cm(2)s cmHg. (C) 2002 Wiley Periodicals, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Isothermal and non-isothermal crystallization kinetics of three metallocene-catalysed short-chain-branched polyethylene (SCBPE) fractions with different degree of branching were investigated by using differential scanning calorimetry (DSC). Narrow molecular weight fractions (M-w = 20,000 and M-w/M-n < 1.15) are used and the degree of branching (CH3 per 1000C) are 1.6, 10.4, 40 respectively. The regime I - II transition temperature are 119.8C, 115.9 degreesC, 113.3 degreesC with the decreasing of degree of branching. Increasing the branch content decreases the rate of secondary nucleation, i,relative to the rate of surface spreading and so increases the range of supercooling over which regime I exists. The rate of bulk crystallization for both isothermal and non-isothermal crystallization decreases with the increasing of degree of branching. Both Ozawa Equation and Kissinger Equation are invalid for non-isothermal crystallization kinetics of SCBPE fractions,that means the effects of the branched chain on crystallization process are more complex than expected.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of physical aging on the tensile fracture behavior of notched Polyphenylquinoxaline (PPQ-E) samples has been studied. The dependence of fracture stress and strain on physical aging has been explained. The glass transition temperature (T-g) and the endothermic peak at the end of T-g transition with different physical aging were characterized using differential scanning calorimetry (DSC) and the results have also been explained. The morphology of fracture surface was observed by scanning electron microscopy (SEM). (C) 2000 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The miscibility, spherulite growth kinetics, and morphology of binary blends of poly(beta-hydroxybutyrate) (PHB) and poly(methyl acrylate) (PMA) were studied with differential scanning calorimetry, optical microscopy, and small-angle X-ray scattering (SAXS). As the PMA content increases in the blends, the glass-transition temperature and cold-crystallization temperature increase, but the melting point decreases. The interaction parameter between PHB and PMA, obtained from an analysis of the equilibrium-melting-point depression, is -0.074. The presence of an amorphous PMA component results in a reduction in the rate of spherulite growth of PRE. The radial growth rates of spherulites were analyzed with the Lauritzen-Hoffman model. The spherulites of PHB were volume-filled, indicating the inclusion of PMA within the spherulites. The long period obtained from SAXS increases with increased PMA content, implying that the amorphous PMA is entrapped in the interlamellar region of PHB during the crystallization process of PHB. All the results presented show that PHB and PMA are miscible in the melt. (C) 2000 John Wiley & Sons, Inc.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A novel AB-monomer, 3-maleimidostilbene (ST-MAI), was synthesized. DSC investigation indicated that the ST-MAI monomer melted at 127 degrees C and thermally polymerized in the temperature range of 180 similar to 300 degrees C. LR investigation on the thermal polymerization processes proved that the thermal polymerization included not only copolymerizaiton between stilbene and maleimide, but also homopolymerization of maleimide. The largest reaction conversion of maleimide and stilbene unit in a ST-MAI monomer was about 82% and 50% respectively. The glass transition temperature of cured ST-MAI resin was 234 degrees C, determined by DSC. The decomposition temperatures for 10% weight loss was above 430 degrees C in both air and nitrogen atmospheres.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The permeation behavior of water vapor, H-2, CO2, O-2, N-2, and CH4 gases in a series of novel poly(aryl ether sulfone)s has been examined over a temperature range of 30-100 degreesC. These polymers include four alkyl-substituted cardo poly(aryl ether sulfone)s and four intermolecular interaction enhanced poly(aryl ether sulfone)s. Their water vapor and gas transport properties were compared to the unmodified cardo poly(aryl ether sulfone) (PES-C). It was found that the bulky alkyl substituents on the phenylene rings were advantageous for gas permeability, while the intermolecular hydrogen bonds and ionic bonds resulted in a considerable increase in gas permselectivity. The causes of the trend were interpreted according to free volume, interchain distance, and glass transition temperature, together with the respective contribution of gas solubility and diffusivity to the overall permeability. Of interest was the observation that IMPES-L, which simultaneously bears bulky isopropyl substituent and pendant carboxylic groups, displayed 377% higher O-2 permeability and 5.3% higher O-2/N-2 permselectivity than PES-C. Furthermore, sodium salt form PES-Na+ and potassium salt form PES-K+ exhibited water vapor permeability twice as high as PES-C and H2O/N-2 selectivity in 10(5) order of magnitude.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The crystallization and melting behavior of mellocene-catalized branched and linear polyethylenes of low molecular weight was studied. It was found that the crystalline lattice of branched polyethylene is larger than that of linear polyethylene because of the existence of branched chains. The melting behavior of branched polyethylene is similar to that of linear polyethylene since the branched chains can not enter the lattice. However, the crystalline behavior of low molecular weight branched polyethylene is the same as that of high molecular weight linear polyethylene, but different with that of low molecular weigh linear polyethylene. Kinetics theory analysis evidenced that the transition temperature of growth regime of the branched polyethylene is about 20 degreesC lower than that of linear polyethylene with the same molecular weight. It may be attributed to the existence of short branched chains.