249 resultados para Silver addition
Structural probing of D-fructose derived ligands for asymmetric addition of diethylzinc to aldehydes
Resumo:
A series of new chiral ligands derived from D-fructose have been synthesized and applied in the enantioselective addition of diethylzinc to aldehydes. Comparison of the enantioselectivities obtained with these ligands demonstrated that the catalytic properties are highly dependent upon the structure of ligands, a rational explanation of the structural effects on the catalytic properties is provided. (C) 2003 Elsevier Science Ltd. All rights reserved.
Resumo:
Ag-CuCl catalysts were found to be active and selective for the epoxidation of propylene using air as the oxidant. Ag catalyst gives a propylene conversion of 31.6%, with a propylene oxide (PO) selectivity of 0.42% at a reaction temperature of 350 degreesC after 220 min of reaction. Addition of CuCl significantly improves the selectivity to PO, and suppresses the conversion of propylene. The Ag-CuCl (1/0.6) catalyst gives propylene conversion of about 3% and a PO selectivity of about 30% at a reaction temperature of 350 degreesC after 500 min of reaction. The activity of the Ag-CuCl catalyst increases with the reaction time and the selectivity to PO is very stable for this catalyst. It is found that AgCl and CuO phases formed during the catalyst preparation are beneficial to the epoxidation of propylene.
Resumo:
The selective catalytic reduction (SCR) of NOx by methane in the presence of excess oxygen was studied on a Zn-Co/HZSM-5 catalyst. It was found that the addition of Zn could improve effectively the selectivity of methane towards NOx reduction. When prepared by a coimpregnation method, the Zn-Co/HZSM-5 catalyst showed much higher catalytic activity than the two catalysts of a Zn/Co/HZSM-5 and Co/Zn/HZSM-5 prepared by the successive impregnation method. It is considered that there exists a cooperative effect among the Zn, Co and zeolite, which enhances the reduction of NO to NO2 reaction and the activation of methane. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Nine cases of standard addition methods in instrumental analysis, including linear instruments, a non-linear response, the electrochemical Nernst equation, and radiochemical techniques.
Resumo:
We have developed a novel strategy for the preparation of ion-bonded supramolecular star polymers by RAFT polymerization. An ion-bonded star supramolecule with six functional groups was prepared from a triphenylene derivative containing tertiary amino groups and trithiocarbonate carboxylic acid, and used as the RAFT agent in polymerizations of tert-butyl acrylate (tBA) and styrene (St). Molecular weights and structures of the polymers were characterized by H-1 NMR and GPC. The results show that the polymerization possesses the character of living free-radical polymerization and the ion-bonded supramolecular star polymers PSt, PtBA, and PSt-b-PtBA, with six well-defined arms, were successfully synthesized.
Resumo:
A facile and efficient synthesis of substituted alpha-alkylidene-beta-lactams have been developed via a NaOH-promoted intramolecular aza-Michael addition of alpha-carbamoyl, alpha-(1-chlorovinyl) ketene-S,S-acetals and subsequent nucleophilic vinylic substitution (SNV) reaction in alcoholic aqueous media. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We produced silver tubes with an outer diameter of 1 mu m, wall thickness of 200 nm, and length of hundreds of micrometers by hydrothermal treatment of aqueous solutions of AgNO3 and hyperbranched polyglycidol (HPG) at 165 degrees C. The surfaces of the silver tubes were chemically modified by HPG, which was confirmed by FTIR of the silver tubes.
Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template
Resumo:
We report a new approach for the synthesis of fluorescent and water-soluble Ag nanoclusters, using the common polyelectrolyte poly(methacrylic acid) as the template.
Resumo:
In this work, we report the first application of water-soluble fluorescent Ag nanoclusters in fluorescent sensors. The fluorescence of poly(methacrylic acid) (PMAA)-templated Ag nanoclusters was found to be quenched effectively by Cu2+, but not when other common metal ions were present. By virtue of the specific response toward the analyte, a new, simple, and sensitive fluorescent method for detecting Cu2+ has been developed based on Ag nanoclusters.
Resumo:
We describe a facile one-pot process to synthesize Ag nanoplates by reducing silver nitrate with 3,3',5,5'-tetramethylbenzidine (TMB) at room temperature. The silver nanoplates were highly oriented single crystals with (111) planes as the basal planes. TMB can be readily oxidized to charge-transfer (CT) complex between TMB, as a donor, and (TMB)(2+), as an acceptor. The pi-pi interaction of the neutral amine (TMB) and diiminium structure (dication, TMB2+) result in the formation of one-dimensional CT complex nanofiber.
Resumo:
Colorimetric assay based on the unique surface plasmon resonance properties of metallic nanoparticles has received considerable attention in bioassay due to its simplicity, high sensitivity, and low cost. Most of colorimetric methods previously reported employed gold nanoparticles (GNPs) as sensing elements. In this work, we develop a sensitive, selective, simple, and label-free colorimetric assay using unmodified silver nanoparticle (AgNP) probes to detect enzymatic reactions. Enzymatic reactions concerning adenosine triphosphate (ATP) dephosphorylation by calf intestine alkaline phosphatase (CLAP) and peptide phosphorylation by protein kinase A (PKA) were studied.
Resumo:
Adsorption of 4,4'-thiobisbenzenethiol (4,4'-TBBT) on a colloidal silver surface and a roughened silver electrode surface was investigated by means of surface-enhanced Raman scattering (SERS) for the first time, which indicates that 4,4'-TBBT is chemisorbed on the colloidal silver surface as dithiolates by losing two H-atoms of the S-H bond, while as monothiolates on the roughened silver electrode. The different orientations of the molecules on both silver surfaces indicate the different adsorption behaviors of 4,4'-TBBT in the two systems.
Resumo:
Here we present a simple wet-chemical approach to synthesize flower-like silver nanostrip assembling architecture at room temperature. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) images indicate that these microstructures with the diameter of similar to 500nm exhibit hietarchical characteristic. X-ray diffraction (XRD), energy-dispersed X-ray spectroscopy (EDX) and Raman spectroscopy indicate that poly (o-diaminobenzene) (PDB) also exists in the silver hierarchical microstructure.
Resumo:
A new and facile method to prepare large-area silver-coated silicon nanowire arrays for surface-enhanced Raman spectroscopy (SERS)-based sensing is introduced. High-quality silicon nanowire arrays are prepared by a chemical etching method and used as a template for the generation of SERS-active silver-coated silicon nanowire arrays. The morphologies of the silicon nanowire arrays and the type of silver-plating solution are two key factors determining the magnitude of SERS signal enhancement and the sensitivity of detection; they are investigated in detail for the purpose of optimization.