168 resultados para Shear (Mechanics)
Resumo:
The new numerical algorithms in SUPER/CESE and their applications in explosion mechanics are studied. The researched algorithms and models include an improved CE/SE (space-time Conservation Element and Solution Element) method, a local hybrid particle level set method, three chemical reaction models and a two-fluid model. Problems of shock wave reflection over wedges, explosive welding, cellular structure of gaseous detonations and two-phase detonations in the gas-droplet system are simulated by using the above-mentioned algorithms and models. The numerical results reveal that the adopted algorithms have many advantages such as high numerical accuracy, wide application field and good compatibility. The numerical algorithms presented in this paper may be applied to the numerical research of explosion mechanics.
Resumo:
This paper summarized the recent research results of Changhe Zhou's group of Information Optics Lab in Shanghai Institute of Optics and Fine Mechanics (SIOM). The first is about the Talbot self-imaging research. We have found the symmetry rule, the regular-rearranged neighboring phase difference rule and the prime-number decamping rule, which is briefly summarized in a recent educational publication of Optics and Photonics News, pp.46-50, November 2004. The second is about four novel microoptical gratings designed and fabricated in SIOM. The third is about the design and fabrication of novel supperresolution phase plates for beam shaping and possible use in optical storage. The fourth is to develop novel femtosecond laser information processing techniques by incorporating microoptical elements, for example, use of a pair of reflective Dammann gratings for splitting the femtosecond laser pulses. The most attractive feature of this approach is that the conventional beam splitter is avoided. The conventional beam splitter would introduce the unequal dispersion due to the broadband spectrum of ultrashort laser pulses, which will affect the splitting result. We implemented the Dammann splitting apparatus by using two-layered reflective Dammann gratings, which generates the almost same array without angular dispersion. We believe that our device is highly interesting for splitting femtosecond laser pulses.
Resumo:
本文选用经过实验验证的碱基序列 ,用简化的方式 ,构建了被水分子和镁离子修饰的核酸序列的分子模型 ,应用分子力学模拟方法对序列进行能量优化 ,对优化后序列的构象参数、成键状况和能量数据等进行了分析。对tRNAHHis GUG的识别特性作了初步的探索 ,得到了和实验结果相近的结论。此外 ,还从能力学的角度讨论了溶剂 -溶质 -溶剂相互作用形成的网状氢键网络对核酸结构稳定性的影响 ,探讨了非Crick_WatsonGU、UU配对的能力学特征并存在于被水分子和镁离子修饰的核酸序列中的GU、UU配对情况。
Resumo:
The boundary condition at the solid surface is one of the important problems for the microfluidics. In this paper we study the effects of the channel sizes on the boundary conditions (BC), using the hybrid computation scheme adjoining the molecular dynamics (MD) simulations and the continuum fluid mechanics. We could reproduce the three types of boundary conditions (slip, no-slip and locking) over the multiscale channel sizes. The slip lengths are found to be mainly dependent on the interfacial parameters with the fixed apparent shear rate. The channel size has little effects on the slip lengths if the size is above a critical value within a couple of tens of molecular diameters. We explore the liquid particle distributions nearest the solid walls and found that the slip boundary condition always corresponds to the uniform liquid particle distributions parallel to the solid walls, while the no-slip or locking boundary conditions correspond to the ordered liquid structures close to the solid walls. The slip, no-slip and locking interfacial parameters yield the positive, zero and negative slip lengths respectively. The three types of boundary conditions existing in "microscale" still occur in "macroscale". However, the slip lengths weakly dependent on the channel sizes yield the real shear rates and the slip velocity relative to the solid wall traveling speed approaching those with the no-slip boundary condition when the channel size is larger than thousands of liquid molecular diameters for all of the three types of interfacial parameters, leading to the quasi-no-slip boundary conditions.
Resumo:
The shear-deformation-potential constant XI-u of the conduction-band minima of Si has been measured by a method which we called deep-level capacitance transient under uniaxial stress. The uniaxial-stress (F) dependence of the electron emission rate e(n) from deep levels to the split conduction-band minima of Si has been analyzed. Theoretical curves are in good agreement with experimental data for the S0 and S+ deep levels in Si. The values of XI-u obtained by the method are 11.1 +/- 0.3 eV at 148.9 K and 11.3 +/- 0.3 eV at 223.6 K. The analysis and the XI-u values obtained are also valuable for symmetry determination of deep electron traps in Si.
Resumo:
Three-point bending experiments were performed on as-cast and annealed samples of Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) bulk metallic glasses over a wide range of temperatures varying from room temperature (293 K) to liquid nitrogen temperature (77 K). The results demonstrated that the free volume decrease due to annealing and/or cryogenic temperature can reduce the propensity for the formation of multiple shear bands and hence deteriorate plastic deformation ability. We clearly observed a sharp ductile-to-brittle transition (DBT), across which microscopic fracture feature transfers from micro-scale vein patterns to nano-scale periodic corrugations. Macroscopically, the corresponding fracture mode changes from ductile shear fracture to brittle tensile fracture. The shear transformation zone volume, taking into account free volume, temperature and strain rate, is proposed to quantitatively characterize the DBT behavior in fracture of metallic glasses.
Resumo:
A theoretical model about the size-dependent interface energy between two thin films with different materials is developed by considering the chemical bonding contribution based on the thermodynamic expressions and the structure strain contribution based on the mechanical characteristics. The interface energy decreases with reducing thickness of thin films, and is determined by such available thermodynamic and mechanical parameters as the melting entropy, the melting enthalpy, the shear modulus of two materials, etc. The predicted interface energies of some metal/MgO and metal/Al2O3 interfaces based on the model are consistent with the results based on the molecular mechanics calculation. Furthermore, the interface fracture properties of Ag/MgO and Ni/Al2O3 based on the atomistic simulation are further compared with each other. The fracture strength and the toughness of the interface with the smaller structure interface energy are both found to be lower. The intrinsic relations among the interface energy, the interface strength, and the fracture toughness are discussed by introducing the related interface potential and the interface stress. The microscopic interface fracture toughness is found to equal the structure interface energy in nanoscale, and the microscopic fracture strength is proportional to the fracture toughness. (C) 2010 American Institute of Physics. [doi:10.1063/1.3501090]
Resumo:
In an earlier study on intersonic crack propagation, Gao et al. (J. Mech. Phys. Solids 49: 2113-2132, 2001) described molecular dynamics simulations and continuum analysis of the dynamic behaviors of a mode II dominated crack moving along a weak plane under a constant loading rate. The crack was observed to initiate its motion at a critical time after the onset of loading, at which it is rapidly accelerated to the Rayleigh wave speed and propagates at this speed for a finite time interval until an intersonic daughter crack is nucleated at a peak stress at a finite distance ahead of the original crack tip. The present article aims to analyze this behavior for a mode III crack moving along a bi-material interface subject to a constant loading rate. We begin with a crack in an initially stress-free bi-material subject to a steadily increasing stress. The crack initiates its motion at a critical time governed by the Griffith criterion. After crack initiation, two scenarios of crack propagation are investigated: the first one is that the crack moves at a constant subsonic velocity; the second one is that the crack moves at the lower shear wave speed of the two materials. In the first scenario, the shear stress ahead of the crack tip is singular with exponent -1/2, as expected; in the second scenario, the stress singularity vanishes but a peak stress is found to emerge at a distance ahead of the moving crack tip. In the latter case, a daughter crack supersonic with respect to the softer medium can be expected to emerge ahead of the initial crack once the peak stress reaches the cohesive strength of the interface.
Resumo:
An experimental research was carried out to study the fluid mechanics of underwater supersonic gas jets. High pressure air was injected into a water tank through converging-diverging nozzles (Laval nozzles). The jets were operated at different conditions of over-, full-and under-expansions. The jet sequences were visualized using a CCD camera. It was found that the injection of supersonic air jets into water is always accompanied by strong flow oscillation, which is related to the phenomenon of shock waves feedback in the gas phase. The shock wave feedback is different from the acoustic feedback when a supersonic gas jet discharges into open air, which causes screech tone. It is a process that the shock waves enclosed in the gas pocket induce a periodic pressure with large amplitude variation in the gas jet. Consequently, the periodic pressure causes the jet oscillation including the large amplitude expansion. Detailed pressure measurements were also conducted to verify the shock wave feedback phenomenon. Three kinds of measuring methods were used, i.e., pressure probe submerged in water, pressure measurements from the side and front walls of the nozzle devices respectively. The results measured by these methods are in a good agreement. They show that every oscillation of the jets causes a sudden increase of pressure and the average frequency of the shock wave feedback is about 5-10 Hz.
Resumo:
A new criterion for shear band formation in metallic glasses is proposed based on the shear plane criterion proposed by Packard and Schuh [1]. This modified shear plane (MSP) criterion suggests that a shear band is not initiated randomly throughout the entire material under stress but is initiated at the physical boundaries or defects and at locations where the highest normal stress modified maximum shear stress occurs. Moreover, the same as in the shear plan criterion, the shear stress all over the shear band should exceed the shear yield strength of the material. For a complete shear band to form, both requirements need to be fulfilled. The shear yield strength of the material is represented by the shear stress of the point at which the shear band stops. The new criterion agrees very well with experimental results in both the determination of the shear yield strength and the shear band path. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An analytical model about size-dependent interface energy of metal/ceramic interfaces in nanoscale is developed by introducing both the chemical energy and the structure stain energy contributions. The dependence of interface energy on the interface thickness is determined by the melting enthalpy, the molar volume, and the shear modulus of two materials composing the interfaces, etc. The analytic prediction of the interface energy and the atomic scale simulation of the interface fracture strength are compared with each other for Ag/MgO and Ni/Al2O3 interfaces, the fracture strength of the interface with the lower chemical interface energy is found to be larger. The potential of Ag/MgO interface related to the interface energy is calculated, and the interface stress and the interface fracture strength are estimated further. The effect of the interface energy on the interface strength and the behind mechanism are discussed.
Resumo:
In this article, we review our recent advances in understanding the deformation behavior of a typical tough Zr41.2Ti13.8Cu12.5Ni10Be22.5 (Vit 1) bulk metallic glass (BMG), as a model material, under various loading modes and strain rates, focusing particularly on the rate-dependence and formation mechanism of shear-banding. Dynamic and quasi-static mechanical experiments, including plate shear, shear punch and spherical indentation, and continuum as well as atomistic modeling on shear-banding are discussed. The results demonstrate that higher strain rate slows down the annihilation process of free volume, but promotes the free-volume coalescence, which is responsible for the rate-dependent shear banding. The physical origin of shear bands, that is the free volume softening underpinned by irreversible rearrangements of atoms, is unveiled. Finally, some concluding remarks are given.