164 resultados para SOLID STATE LASERS
Resumo:
The growth and characterization of quantum cascade (QC) lasers based on InGaAs/InAlAs material system are investigated. Pronounced intersubband absorption from stacked active region of QC structure is used to monitor the wavelength of QC laser and disclose the material quality. The precise control of the epilayer thickness and the good quality of interfaces are demonstrated by the abundant narrow satellite peaks of X-ray diffraction. Laser action in quasi-continuous wave operation is achieved at lambda approximate to 5.1-5.2 mum up to 300 K. For 10 x 800 mum(2) laser device, peak output power of similar to7.2 mW and threshold current density of 3 kA/cm(2) at room temperature are obtained. For some devices, if keep the peak output powers at the similar to2 mW level, quasi-continuous wave operation at room temperature persists more than 1 h are recorded. (Q) (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A theoretical study of modal gain in p-doped 1.3 mu m InAs/GaAs quantum dot (QD) lasers is presented. The expression of modal gain is derived, which includes an effective ratio that describes how many QDs contribute to the modal gain. The calculated results indicate that the modal gain with the effective ratio is much smaller than that without the effective ratio. The calculated maximum modal gain is is a good agreement with the experimental data. Furthermore, QDs with lower height or smaller aspect ratio are beneficial in achieving a larger maximum modal gain that leads to lower threshold current density and higher differential modal gain. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
Small signal equivalent circuit model of vertical cavity surface emitting lasers (VCSEL's) is given in this paper. The modulation properties of VCSEL are simulated using this model in Pspice program. The simulation results are good agree with experiment data. Experiment is performed to testify the circuit model.
Resumo:
We demonstrate a low threshold polymer solid state thin-film distributed feedback (DFB) laser on an InP substrate with the DFB structure. The used gain medium is conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) doped polystyrene (PS) and formed by drop-coating method. The second order Bragg scattering region on the InP substrate gave rise to strong feedback, thus a lasing emission at 638.9nm with a line width of 1.2nm is realized when pumped by a 532nm frequency-doubled Nd: YAG pulsed laser. The devices show a laser threshold as low as 7 nJ/pulse.
Resumo:
In order to characterize the physical and spatial properties of nano-film pattern on solid substrates, an automatic imaging spectroscopic ellipsometer (ISE) based on a polarizer - compensator - specimen - analyzer configuration in the visible region is presented. It can provide the spectroscopic ellipsometric parameters psi (x, y, lambda) and Delta (x, y, lambda) of a large area specimen with a lateral resolution in the order of some microns. A SiO2 stepped layers pattern is used to demonstrate the function of the ISE which shows potential application in thin film devices' such as high-throughput bio-chips.
Resumo:
通过热沉积系数研究在激光提取条件下掺杂原子分数为1.0%的Nd:YAG陶瓷激光器中热沉积问题.热沉积系数定义为热沉积功率与激光器输出功率之比.在理论分析基础上,通过测量激光器斜率效率来间接测定热沉积系数,实验测定的热沉积系数值为0.63.建立激光提取条件下Nd:YAG陶瓷发热模型,讨论了影响热沉积系数的主要因素.结果表明:热沉积系数对Nd:YAG陶瓷的辐射量子效率、交叠效率以及激光提取效率的变化非常敏感.为有效减少介质内热沉积,在激光器优化设计中交叠效率和激光提取效率是需要着重考虑的参数.所得结果可为进一
Resumo:
报道了千瓦级激光二极管面阵抽运固体热容激光器的理论与实验研究, 分别采用Nd:YAG单板条和双板条串接的热容激光器, 利用热容激光器的理论计算模型计算了在一定的工作时间内激光输出特性, 并进行了实验验证。实验中采用的晶体尺寸均为59 mm×40 mm×4.5 mm, 对单板条进行抽运时平均功率大约为5.6 kW, 双板条串接时为11.2 kW, 重复频率为1 kHz, 占空比为20%。实验中观察了1 s的工作时间内脉冲能量输出的波动情况, 单板条时单脉冲能量输出最大为1.3 J, 在1 s后单脉冲能量输出
Resumo:
对多横模全固态激光器使用正交频率变换进行了分析,计算了频率转换效率与激光发散角的关系。使用双KTP晶体正交倍频的方法,对Nd∶YAG激光器输出的含有高阶横模的激光进行倍频实验研究。在1064 nm Nd∶YAG激光基波功率密度为121 MW/cm2时,其谐波转换效率达到75.5%。研究表明,对于光束质量较差的基波激光,采用正交频率变换的方式,适当选择晶体参数,同样可以获得较高效率的二次谐波输出。
Resumo:
尽管双包层光纤激光器的散热性能好于传统的固体激光器的散热性能,光纤激光器中的热沉积仍然是限制提高其输出功率的重要因素.以双端抽运的400W双包层光纤激光器为实例,定量分析了光纤内的热沉积分布.根据所建立的散热模型,为了确保千瓦级双包层光纤激光器安全稳定的运行,抽运端附近的对流换热系数应大于2.8×10-2W·cm-2K-1.据此设计出高功率双包层光纤激光器抽运端冷却装置并成功应用在激光系统中,获得了千瓦级的激光输出.
Resumo:
By employing a continuous-wave (CW) Ti:sapphire tunable laser as a pumping source and a Cr4+:YAG single crystal as the saturable absorber (SA), a passively Q-switched Nd:YAG ceramic laser has been demonstrated at room temperature. With an absorbed pumping power of 541 mW at 808 nm, an average output power of 61 mW at 1064 nm has been obtained with 3.5 mu J pulse energy, 15 ns pulse width and 18.18 kHz repetition rate, and the corresponding slope-efficiency is 15%. The relationships between the pulse width, repetition rate, average output power, pulse energy, and peak power on the absorbed pumping power for different initial transmission of the Cr4+:YAG SA are discussed separately. The Nd:YAG ceramic is one of the most promising laser materials for compact, efficient, all-solid-state pulsed lasers.
Resumo:
Partially end-pumped slab laser is an innovative solid state laser, namely InnoSlab. Combining the hybrid resonator with partially end-pumping, the output power can be scaled with high beam quality. In this paper, the output intensity distributions are simulated by coordinate transformation fast Fourier transform (FFT) algorithm, comparing the thermal lens influence. As the simulated curves showed, the output mode is still good when the thermal lens effect is strong, indicating the good thermal stability of InnoSlab laser. Such a new kind of laser can be designed and optimized on the base of this simulation.
Resumo:
In this paper, a highly efficient Ti:sapphire end-pumped 1 at.-% Nd:YAG ceramic laser that is comparable in efficiency with Nd:YAG single crystal lasers has been developed. Optical absorption and emission spectra for Nd:YAG ceramics have been measured. With 673-mW pumping, 295-mW laser output at 1064 nm has been obtained. The laser threshold is only 13 mW. Deducted the transmitted light, the corresponding optical-to-optical conversion efficiency is 58.4%. The lasing characteristics of Nd:YAG ceramic are nearly equal to those of Nd:YAG single crystal.
Resumo:
Thermal effects in Nd:YAG planar waveguide lasers with non-symmetrical claddings are discussed. The heat generated in the active core can be removed more efficiently by directly contacting the active core to the heat sink. Several cladding materials are compared to optimize the heat removal. Furthermore, uniform pumping is achieved with oblique edge-pumping technique. Using quasi-CW pumping at 1 KHz repetition rate, an average output power of 280 W with a slope efficiency of 38% is obtained with a positive unstable resonator. (C) 2008 Elsevier B.V. All rights reserved.