152 resultados para Reservoir drawdown.
Resumo:
The northern South China Sea margin has experienced a rifting stage and a post-rifting stage during the Cenozoic. In the rifting stage, the margin received lacustrine and shallow marine facies sediments. In the post-rifting thermal subsidence, the margin accumulated shallow marine facies and hemipelagic deposits, and the deepwater basins formed. Petroleum systems of deepwater setting have been imaged from seismic data and drill wells. Two kinds of source rocks including Paleogene lacustrine black shale and Oligocene-Early Miocene mudstone were developed in the deepwater basin of the South China Sea. The deepwater reservoirs are characterized by the deep sea channel rill, mass flow complexes and drowned reef carbonate platform. Profitable capping rocks on the top are mudstones with huge thickness in the post-rifting stage. Meanwhile, the faults developed during the rifting stage provide a migration path favourable for the formation of reservoirs. The analysis of seismic and drilling data suggests that the joint structural and stratigraphic traps could form giant hydrocarbon fields and hydrocarbon reservoirs including syn-rifting graben subaqueous delta, deepwater submarine fan sandstone and reef carbonate reservoirs.
Resumo:
3DMove software, based on the three-dimension structural model of geologic interpretation, can forecast reservoir cracks from the point of view of formation of the structural geology, and analyze the characteristics of the cracks. 3DMove software dominates in forecasting cracks. We forecast the developments and directions of the cracks in Chengbei buried hill with the application of forecasting technique in 3DMove software, and obtain the chart about strain distributing on top in buried hill and the chart about relative density and orientation and the chart about the analysis of crack unsealing. In Chengbei 30 buried hill zone, north-west and north-east and approximately east-west cracks in Cenozoic are very rich and the main directions in every fault block are different. Forecasting results that are also verified by those of drilling approximately accord with the data from well logging, the case of which shows that the technique has the better ability in forecasting cracks, and takes more effects on exploration and exploitation of crack reservoir beds in ancient buried hill reservoirs.
Resumo:
Environmental microbiology investigation was performed to determine the molecular diversity of beta-lactamase genes among ampicillin-resistant bacteria from Jiaozhou Bay. beta-lactamase genes were detected in 93.8% of the bacterial isolates identified as Enterobacteriaceae. The most frequently detected gene was bla(TEM), followed by bla(SHV), bla(OAX-1), bla(MOX) and bla(CMY). Most of the isolates (68.8%) were positive for the intI1 integrase gene, and two isolates were also found for the intI2 gene. The dfr and aadA gene cassettes were predominant. Anthropogenic contamination from onshore sewage processing plants might contribute predominantly to the beta-lactamase gene reservoir in the studied coastal waters. Environmental antibiotic-resistant bacteria and resistance genes may serve as bioindicators of coastal environmental quality or biotracers of the potential contamination sources. This is the first report of the prevalence and characterization of beta-lactamase genes and integrons in coastal Enterobacteriaceae from China.
Resumo:
Hydrological statistical data, remote sensing images, and bathymetric charts were used to study the recent evolution of the Huanghe (Yellow) River delta under human-induced interventions. It was clear that water and sediment discharge from the Huanghe River had dropped rapidly since 1970, particularly after 1986. The water and sediment discharges for the period of 1986-2000 were found to have been reduced to only 29.2% and 31.2% of those in the period of 1950-69. This was caused by human factors in the upper and middle reaches of the Huanghe River, including water diversion, damming and reservoir construction, and water and soil conservation. Based on the results from visual interpretation of processed Landsat (MSS or TMJETM+) images dated from 1976 to 2001 and two digital elevation models generated from bathymetric charts surveyed in 1976 and 1992, we found that human-induced reduction of water and sediment discharge led to coastline retrogradation, with the maximum mean recession rate of -0.51 km yr-1 over the period of 1976-98, and seabed erosion beyond the -20 m isobath between 1976 and 1992. Other impacts of human activities on the recent evolution of the Huanghe River delta, including tidal flats shrinking, artificial coastline increasing, land surface sinking and so on, were also analyzed. We found that: (i) the whole delta, including subaerial and subaqueous, has turned from a highly constructive period to a destructive phase; (ii) channelization and dredging were two of the main causes of delta destruction; (iii) land loss in the Huanghe River delta caused by submersion will be increased in the near future; (iv) the Huanghe River delta was becoming more fragile and susceptible to natural hazards.
Resumo:
The Jiyang superdepression is one of the richest hydrocarbon accumulations in the Bohai Bay basin, eastern China. Comprehensive seismic methods have been used in buried hill exploration in Jiyang to describe these fractured reservoirs better. Accurate seismic stratigraphic demarcation and variable-velocity mapping were applied to reveal the inner structure of the buried hills and determine the nature of the structural traps more precisely. Based on the analysis of rock properties and the characteristics of well-developed buried hill reservoirs, we have successfully linked the geology and seismic response by applying seismic forward technology. Log-constrained inversion, absorption coefficient analysis and tectonic forward-inversion with FMI loggings were applied to analyse and evaluate the buried hill reservoirs and gave satisfying results. The reservoir prediction was successful, which confirmed that the comprehensive utilization of these methods can be helpful in the exploration of buried hill reservoirs.
Resumo:
东营凹陷南斜坡地区地处盆地边缘,构造活动频繁,形成了多次地层剥蚀与超覆,发育多期不整合,同时研究区内油源十分丰富,油气可以沿断层、不整合面和渗透性砂体运移至各层系,具有形成地层油气藏的得天独厚的条件。 在综合分析地震、测井、岩心、录井等资料基础上,借鉴前人研究成果,结合研究区盆地演化和构造运动特征,建立了东营凹陷南斜坡的层序地层学格架,将东营凹陷南斜坡地区古近系划分为一个一级层序,四个二级层序,八个三级层序。 在关键井单井相和剖面相分析的基础上,详细研究了东营凹陷南斜坡地区的沉积演化和展布特征,认为其表现出了明显的规律性:在横向上,沉积体系的分布具有明显的分带性,靠近盆地边缘部位主要发育冲积扇―河流相沉积,向盆地内部方向发育有三角洲、滩坝、远岸浊积扇等沉积体系类型;在垂向上,沉积体系的演化具有旋回性,从孔一段和沙四下亚段的冲积扇沉积,到沙四上亚段的滨浅湖滩坝沉积,到沙三下亚段和沙三中亚段的浊积扇沉积,到沙三上亚段和沙二下亚段的三角洲沉积,再到沙一段的生物滩坝沉积和东营组的三角洲沉积,表现出了明显的旋回性。 详细研究了东营凹陷南斜坡的地层油藏输导体系,认为东营凹陷南斜坡地层圈闭的输导体系由断层、不整合和高渗透输导性骨架砂体组成。分析了南斜坡主要断层石村断层、陈官庄北断层和陈官庄南断层的封闭性;研究了不整合的类型、结构、分布特征及其在油气运聚过程中的地质意义,认为不整合的类型可以分为角度不整合和平行不整合两大类;不整合在纵向上具有三层结构,分别是不整合面之上底砾岩、风化粘土层及半风化岩石即风化林滤带;不整合的分布具有差异性、继承性和迁移性的特征;不整合在油气的运聚过程中主要起到五个方面的作用,使得油气能够发生长距离的运移,改善了储集层储集性能,改变了油气运移的方向,不整合的存在表明烃源岩可能发生二次生烃作用,对油气聚集成藏具有双重作用;分析了东营凹陷南斜坡的砂体展布及其孔渗特征,并对其输导系统进行了评价,认为王家岗和纯化-草桥鼻状构造带为来自于牛庄生油洼陷的油气的优势运移方向,陈官庄地区为一般运移方向。 分析了东营凹陷南斜坡地层油藏的烃源岩条件、储层特征、油气成藏动力特征、生油期与地层圈闭定型期的配置关系,查明了王73井未成藏原因,并在此基础了总结了东营凹陷南斜坡地区地层油藏成藏规律,分析了地层油气藏有利勘探方向。
Resumo:
研究区孤岛油田中二区中28-8井区位于孤岛油田中部,属孤岛披覆背斜构造中南部。选择孤岛油田中二区中28-8密井网典型井区作为解剖区,以馆陶组上段河流相地层为主要研究对象。根据区域地质资料、岩心资料、地震资料、开发动态资料、测井资料和开发动态资料的研究,建立地层模型,对研究区进行沉积相分析、高分辨率层序地层分析,确定了储层特征,并建立储层地质知识库,采用地质统计学的各种插值和模拟方法,开展随机模拟方法优选分析,选择合适的随机模拟方法,建立三维储层模型。采用地质统计学的交叉检验和分维分析等手段验证模型的可靠性和实用性。在此基础上进行网格粗化,实现储层模型的三维可视化。 论文将静态研究与实际生产动态相结合,以标准层和辅助标准层划分砂层组,以沉积旋回—沉积时间单元对比方法为主,结合其他对比原则,对孤岛油田馆陶组河流相储层进行小层精细对比和划分。在精细地层对比、井斜校正和补心高度校正的基础上,对孤岛油田馆陶组河流相储层主力小层顶底面微型构造进行了研究和分析,在研究区内识别出3种微型构造:正向微型构造;负向微型构造;斜面微型构造。 在河流相储层构型理论的指导下,采用动静结合、微观与宏观结合进行储层的多尺度剖析,依次识别复合砂体内的河道,河道内的点坝,点坝内的侧积体和泥质侧积层,认为发育4种亚相(河道、溢岸、河漫、废弃河道),6种微相(点坝、决口水道、决口扇、天然堤、泛滥平原、废弃河道)。砂层内部发育3种夹层(泥质夹层、钙质夹层、物性夹层),层间发育4种隔层(连续分布的隔层、均匀分布的隔层、条带状分布的隔层、局部分布的隔层),并分别确定了各种隔夹层的空间展布规律。本次研究主要采用“相控建模” 方法,在随机模拟研究中,通过序贯指示模拟方法建立沉积相模型,在此基础上,通过序贯高斯模拟方法建立三维储层模型。 储层模型建成后,对模型符合地质认识的程度进行了检验。认为模拟效果良好,最终取个次随机模拟实现计算储量结果的平均值作为各主力层和全区的最终储量。
Resumo:
研究区位于郯庐断裂中段与济阳坳陷的构造结合部,区内走滑构造广泛发育,主要的走滑断裂有7条,分别是郯庐断裂带的东西两支、垦东断层、孤东断层、长堤断层、埕东断层和发育于垦东凸起中部的浅层走滑构造带。走滑构造带与油气富集带有着明显的对应关系。 通过对研究区内二维、三维地震测线和平面构造图的精细解释和分析,分别揭示了各走滑断裂在平面、剖面和三维空间上的构造形态。根据走滑断裂及其伴生构造的平面和剖面上的几何学特征,将研究区内的走滑断裂划分为三种类型:成熟型走滑断裂、隐伏型走滑断裂、不连续型的走滑断裂。 从理论模式研究入手,推导了拉分盆地中盆地的走滑速率与沉降速率之间的关系,证实了走滑速率同盆地的几何形状参数、最大沉降深度和盆地的沉降速率存在着稳定的数值关系。通过对莱州湾地区潍北凹陷基底沉降历史的分析,建立了潍北凹陷沉降速率与郯庐断裂中段走滑速率之间的经验关系式,进而求出郯庐断裂中段新生代右行走滑位移量的大小为40km。 运用2DMove软件,对研究区内四条典型剖面进行构造复原,计算出了各条剖面每个时期的伸展参数,对研究区构造活动强度进行了定量分析,揭示了研究区的构造演化规律。通过运用Ansys软件进行有限元模拟,恢复了晚白垩世晚期-古近纪早期研究区内的构造应力场和应变场,揭示了扭张作用是研究区内走滑断层开始走滑的主要原因。 通过上述分析,结合对究区内近几年勘探开发成功和失败的实例分析,全面探讨了走滑活动对于油气成藏“生”、“储”、“盖”、“圈”、“运”、“保”各因素的影响。
Resumo:
本文以东营凹陷辛东地区古近纪及新近纪地层为研究目标,通过层序地层划分、沉积相分析、储层评价和油藏特征及成藏模式研究,综合评价了油气藏,并进行了有利勘探目标预测。 在辛东地区首次通过层序地层学原理划分4个二级层序、7个三级层序,为储层和圈闭预测建立的等时层序地层格架;岩石类型主要包括砂岩、灰岩、泥岩和页岩等,以砂岩和泥岩为主。通过岩心观察、测井曲线分析、单井沉积相研究,结合剖面地震相和剖面沉积相分析表明,研究区发育三角洲、滨浅湖、半深湖-深湖相、湖底扇等沉积类型,形成浊积扇体-前三角洲-三角洲前缘-三角洲平原-河流相-浅湖亚相纵向演化序列,包括了含砾砂岩、中粗砂岩、细砂岩及粉砂岩储层;储层以次生孔隙为主,存在1600 ~ 2200m和2600 ~ 3200m次生孔隙带,为碳酸盐胶结物和长石与部分岩屑的溶蚀作用和粘土矿物脱水作用所致,在断裂活动、有效烃源岩成熟度范围的中细砂岩内最发育;较好的渗透层主要分布在东营组、沙二段和沙三上亚段。 研究区发育断层、岩性、断层-岩性等类型油气藏,主要形成于① 古近纪末东营期的生油层系内及邻近地区,以原生岩性油气藏为主;② 新近纪至第四纪沉积时期,其中新近纪明化镇和第四纪沉积时期,成为油气运聚的重要时期。成藏动力学系统呈现下部自源原生封闭型、中部它源原生半封闭型及上部它源次生开放型三种典型特征。 通过对成藏主控因素和油气分布规律的综合认识,在本区优选出3个有利勘探区域:① 沙三中下及沙四段浊积砂体,在构造翼部地区发育岩性油藏;② 沙二段和沙三上砂体,孔渗条件好,断层封堵性控制油藏;③ 馆陶-明化镇组浅层次生油藏,油气沿着断层、砂体不断地从翼部的深层向核部的浅层运聚形成油藏。
Resumo:
Carbon cycle is connected with the most important environmental issue of Global Change. As one of the major carbon reservoirs, oceans play an important part in the carbon cycle. In recent years, iron seems to give us a good news that oceanic iron fertilization could stimulate biological productivity as CO2 sink of human-produced CO2. Oceanic iron fertilization experiments have verified that adding iron into high nutrient low chlorophyll (HNLC) seawaters can increase phytoplankton production and export organic carbon, and hence increase carbon sink of anthropogenic CO2, to reduce global warming. In sixty days, the export organic carbon could reach 10 000 times for adding iron by model prediction and in situ experiment, i.e. the atmospheric CO2 uptake and inorganic carbon drawdown in upper seawaters also have the same magnitude. Therefore, oceanic iron fertilization is one of the strategies for increasing carbon sink of anthropogenic CO2. The paper is focused on the iron fertilization, especially in situ ocean iron experiments in order that the future research is more efficient.
Resumo:
Detritus, as a nutrients reservoir, affects the trophic structure and dynamics of communities and supports a greater diversity of species and longer food chains. Detritivorous fish is an important organism to regenerate the nutrients from sediments. Despite the numerous studies on the nutrients cycle in fish, only a few attempts have been made to quantify the regenerating ability. In the present study, we chose the common detritivorous fish redeye mullet as the research object. Redeye mullet is also a common poly-culture fish in China. Diet, including a commercial diet mostly used in aquaculture and a home-made diet with contents close to detritus, was used and considered as a fixed factor. Temperature was also considered as a fixed factor as much research has shown that temperature has significant effects on fish metabolism. Moreover, body size was regarded as a covariate under analysis of covariance. Three key nutrients, namely carbon, nitrogen and phosphorus, were used to measure the nutrient-regenerating ability of redeye mullet under laboratory conditions. The results showed that the nutrient regeneration in percent of the consumption decreased with increasing temperature. Carbon and nitrogen regeneration of redeye mullet fed on commercial diet was lower than those of the home-made diet group, while the opposite was found for phosphorus. In each group, the amount of regenerated nutrients increased linearly with body size. Fed on the home-made diet, 5-g fish at 25 degrees C can regenerate 210.822 mg C, 37.533 mg N and 0.727 mg P per day.
Resumo:
水库建设方案的评价,涉及投入和效益两方面。投入包括资金和工期等,称为“输入”:效益包括工农业用水增加、防洪能力强增等。称为“输出”。分析这种多输入,多输出的系统,应用数据包络分析方法是非常有效的。
Resumo:
Proven by the petroleum exploration activities, the karsts-fissure reservoir in carbonate rocks is significant to find out the large scale oil & gas field. They are made up of the four reservoir types: karsts-cave, karsts-crack, crack-cave and fracture-pore-cave. Each reservoir space and each reservoir bed has different features of reservoir heterogeneity and small scale of pore-crack-cave. The fracture-cave reservoir in carbonate rocks is characteristic by multi-types and long oiliness well. The reservoir shape is controlled by the irregular pore-crack-cave. The development level of fracture and karst-cave is the key element of hydrocarbon enriching, high productivity and stable production. However, most of Carbonate formation are buried deeply and the signal-ration-noise of seismic reflection are very low. It is reason why the fracture-cave reservoir are difficult to be predicted effectively. In terms of surveyed and studied lots of the former research outcome, The author applied the methods of synthetical reservoir geophysical prediction from two ways including macrosopic and microcomic technics in terms of the reservoir-cap condition, geophysics and geology feature and difficulty of prediction in carbonate rocks. It is guiden by the new ideas of stratigraphy, sedimentology, sedimentography, reservoir geology and karst geology. The geophysics technology is key technics. In aspects of macroscopic studies, starting off the three efficiencies of controlling the reservoir distribution including sedimental facies, karst and fracture, by means of comprehensive utilization of geology, geophysics, boring well and well log, the study of reservoir features and karst inside story are developed in terms of data of individual well and multiple well. Through establishing the carbonate deposition model, karstic model and fracture model, the macro-distribution laws of carbonatite are carried out by the study of coherence analysis, seismic reflection feature analysis and palaeotectonics analysis. In aspects of microcosmic studies, starting off analysis in reservoir geophysical response feature of fracture and karst-cave model according to guidance of the macroscopic geological model in carbonate reservoir, the methods of the carbonate reservoir prediction are developed by comprehensively utilization of seismic multi-attribution intersection analysis, seismic inversion restricted by log, seismic discontinuity analysis, seimic spectrum attenuation gradient, moniliform reflection feature analysis and multiparameter karst reservoir appraisement.Through application of carbonate reservoir synthetical geophysics prediction, the author r successfully develops the beneficial reservoir distribution province in Ordovician of Katake block 1in middle Tarim basin. The fracture-cave reservoir distributions are delineated. The prospect direction and favorable aims are demonstrated. There are a set of carbonate reservoir prediction methods in middle Tarim basin. It is the favorable basic technique in predicting reservoir of the Ordovician carbonate in middle Tarim. Proven by exploration drilling, the favorable region of moniliform reflection fracture and pore-cave and cave-fracture in lower-middle Ordovician are coincidence with the region of hydrocarbon show. It’s indicated that the reservoir prediction methods described in the study of Ordovician carbonate formation are feasible practicably.
Resumo:
On the basis of analyzing the principle and realization of geo-steering drilling system, the key technologies and methods in it are systematically studied in this paper. In order to recognize lithology, distinguish stratum and track reservoirs, the techniques of MWD and data process about natural gamma, resistivity, inductive density and porosity are researched. The methods for pre-processing and standardizing MWD data and for converting geological data in directional and horizontal drilling are discussed, consequently the methods of data conversion between MD and TVD and those of formation description and adjacent well contrast are proposed. Researching the method of identifying sub-layer yields the techniques of single well explanation, multi-well evaluation and oil reservoir description. Using the extremum and variance clustering analysis realizes logging phase analysis and stratum subdivision and explanation, which provides a theoretical method and lays a technical basis for tracing oil reservoirs and achieving geo-steering drilling. Researching the technique for exploring the reservoir top with a holdup section provides a planning method of wellpath control scheme to trace oil and gas reservoir dynamically, which solves the problem of how to control well trajectory on condition that the layer’s TVD is uncertain. The control scheme and planning method of well path for meeting the demands of target hitting, soft landing and continuous steering respectively provide the technological guarantee to land safely and drill successfully for horizontal, extended-reach and multi-target wells. The integrative design and control technologies are researched based on geology, reservoir and drilling considering reservoir disclosing ratio as a primary index, and the methods for planning and control optimum wellpath under multi-target restriction, thus which lets the target wellpath lie the favorite position in oil reservoir during the process of geo-steering drilling. The BHA (bottomhole assembly) mechanical model is discussed using the finite element method, and the BHA design methods are given on the basis of mechanical analyses according to the shape of well trajectory and the characteristics of BHA’s structure and deformation. The methods for predicting the deflection rate of bent housing motors and designing their assemblies are proposed based on the principle of minimum potential energy, which can clearly show the relation between the BHA’s structure parameters and deflection rate, especially the key factors’ effect to the deflection rate. Moreover, the interaction model between bit and formation is discussed through the process of equivalent formation and equivalent bit considering the formation anisotropy and bit anisotropy on the basis of analyzing the influence factors of well trajectory. Accordingly, the inherence relationship among well trajectory, formation, bit and drilling direction is revealed, which lays the theory basis and technique for predicting and controlling well trajectory.
Resumo:
The rugged surface topography determined the seismic data acquisition construction conditions and the seismic wave explosive and receiver quality in Qaidam Basin. This dissertation systematically researched the seismic acquisition, imaging process and the attribute analysis techniques of complicated oil and gas reservoir. The main research achievements and cognitions are as follows: 1. Through the stimulation effects research and analysis from the aspect of lithologic water-containing differences, it’s specific that stable hydrous sand layer can effectively enhance the stimulation effects combined with the corresponding field tests. The seismic data S/N ratio has been improved due to the combination explosive stimulation. Through the fold number and maximum offset analyses of target horizon, the complicated geometry has been optimized and the S/N ratio of seismic data has been improved, which made an important basis for improvement of 3D seismic data. 2. It has been proved that the first arrival refraction static correction method under the model constraint of fine surface survey is suitable to the Qaidam Basin of western areas by the real seismic data processing. Although the refraction horizon of near surface has some changes in a certain extent, it’s steady basically. The refraction horizon can be continuously traced in sections, so it’s qualified for the refraction static correction method on the whole. 3. The research is based on the curved-ray pre-stack time migration techniques of rough topography, and improved the imaging precision of complex areas. This techniques adopted the constant and variable velocity scanning mode and enhanced the velocity analysis precision. The 3D pre-stack time migration techniques reasonably solved the imaging and velocity multiple solutions problems of steep-dip faults and the intersections of horizontal layers. What’s more, fine velocity analysis and mute are very important to enhance the imaging precision of the seismic data in complicated Wunan areas. 4. The 3D seismic data edge-preserving processing methods have been realized due to the image process techniques. Because this method uses the large range filter, it can attenuate the noise maximally. The faults, break points, lithologic pinchout points and lithologic body of small scale such as river will not be influenced by blur because of the edge-preserving characterization of the method which is really an effective assistant technique of low S/N ratio seismic data attribute analysis. 5. The use of spectral decomposition technique can effectively identify the reservoirs. The special geology body which will not be identified (or without obvious characters) in the seismic profile may be found through the details changes of different frequencies in the amplitude profiles.