236 resultados para MIXED-CRYSTALS
CO2 flux evaluation over the evergreen coniferous and broad-leaved mixed forest in Dinghushan, China
Resumo:
The genus Sinocyclocheilus is distributed in Yun-Gui Plateau and its surrounding region only, within more than 10 cave species showing different degrees of degeneration of eyes and pigmentation with wonderful adaptations. To present, published morphological and molecular phylogenetic hypotheses of Sinocyclocheilus from prior works are very different and the relationships within the genus are still far from clear. We obtained the sequences of cytochrome b (cyt b) and NADH dehydrogenase subunit 4 (ND4) of 34 species within Sinocyclocheilus, which represent the most dense taxon sampling to date. We performed Bayesian mixed models analyses with this data set. Under this phylogenetic framework, we estimated the divergence times of recovered clades using different methods under relaxed molecular clock. Our phyloegentic results supported the monophyly of Sinocyclocheilus and showed that this genus could be subdivided into 6 major clades. In addition, an earlier finding demonstrating the polyphyletic of cave species and the most basal position of S. jii was corroborated. Relaxed divergence-time estimation suggested that Sinocyclocheilus originated at the late Miocene, about 11 million years ago (Ma), which is older than what have been assumed.
Resumo:
Studies on mixed mass cultivation of Anabaena spp. on a large scale (5170 m2) were conducted continuously for 3 years. Under the continental monsoon climate in northern subtropics (30-degrees-N, 115-degrees-E), 7-11 g dry weight m-2 day-1 of microalgal biomass on average was harvested in simple plastic greenhouses in the effective growth days during the warmer seasons. The maximum productivity was 22 g m-2 day-1 in the middle of summer. Observations on the productive properties of strains of Anabaena spp. indicated that they were different from and could compensate for each other in their productivities and adaptations to the seasonal changes. With different lining materials (PVC sheets, concrete, sand and soil) in the culture ponds, no significant variation of productivity was found, but bubbling with biogas in the middle of the day and the application of some growth regulating substances (2,4-D, NaHSO3 and extracts of oyster mushroom spawn) was able to improve the production. The cost of microalgal biomass in this way was around 0.75-1.0 US dollar(s) per kilogram.
Resumo:
We investigate two-photon excited fluorescence from CdSe quantum dots with a center-emitting wavelength of 655 nm on SiN photonic crystals. We find that two-photon excited fluorescence is enhanced by more than 1 order of magnitude in the vertical direction when a photonic crystal is used compared to the fluorescence spectra in the absence of photonic crystals. The spectrum of two-photon excited fluorescence from quantum dots on SiN photonic crystal is observed to shift to blue compared to that from quantum dots on SiN without photonic crystals. (C) 2010 Optical Society of America
Resumo:
The optical properties of GaAs/AlGaAs thin films with photonic crystals were investigated by measuring their photoluminescence spectra. The spectral intensities, lifetimes, and quantum efficiencies decreased greatly compared with those in blank material without photonic crystals. The quantum efficiencies in the material were also calculated from spectral intensities and lifetimes and the quantum efficiencies calculated from those two methods agreed with each other to some extent.
Resumo:
The resistivity of hydrothermally grown ZnO single crystals increased from similar to 10(3) Omega cm to similar to 10(6) Omega cm after 1.8 MeV electron irradiation with a fluence of similar to 10(16) cm(-2), and to similar to 10(9) Omega cm as the fluence increased to similar to 10(18) cm(-2). Defects in samples were studied by thermally stimulated current (TSC) spectroscopy and positron lifetime spectroscopy (PLS). After the electron irradiation with a fluence of 10(18) cm(-2), the normalized TSC signal increased by a factor of similar to 100. A Zn vacancy was also introduced by the electron irradiation, though with a concentration lower than expected. After annealing in air at 400 degrees C, the resistivity and the deep traps concentrations recovered to the levels of the as-grown sample, and the Zn vacancy was removed.
Resumo:
We investigated the dynamics of spontaneous emission from a photonic crystal etched into a SiN slab. After fitting the decay curves of the emission to double exponential functions, we divided the dynamic process of the spontaneous emission into a fast process and a slow process. It was observed that the presence of the photonic crystal increased the proportion of the fast decay component, and consequently, the emission rate and time-integrated emission intensity were also enhanced. These enhancements were a result of the coupling of the guide modes to the leaky modes of the photonic crystal slab waveguide. (C) 2008 Optical Society of America.
Resumo:
The results of conductivity, photoconductivity and constant photocurrent method absorption measurements by DC and AC methods in hydrogenated silicon films with mixed amorphous-nanocrystalline structure are presented. A series of diphasic silicon films was deposited by very high frequency plasma enhanced chemical vapor deposition technique, using different hydrogen dilution ratios of silane. The increase of hydrogen dilution ratio results in five orders of magnitude increase of conductivity and a sharp increase of grain volume fraction. The comparison of the absorption spectra obtained by DC and AC methods showed that they are similar for silicon films with the predominantly amorphous structure and films with high grain volume fraction. However we found a dramatic discrepancy between the absorption spectra obtained by DC and AC constant photocurrent methods in silicon films deposited in the regime of the structure transition from amorphous to nanocrystalline state. AC constant photocurrent method gives higher absorption coefficient than DC constant photocurrent method in the photon energy range of 1.2-1.7 eV. This result indicates the possibility of crystalline grains contribution to absorption spectra measured by AC constant photocurrent method in silicon films with intermediate crystalline grain volume fraction. (c) 2008 Published by Elsevier B.V.
Resumo:
We investigate the lifetime distribution functions of spontaneous emission from line antennas embedded in finite-size two-dimensional 12-fold quasi-periodic photonic crystals. Our calculations indicate that two-dimensional quasi-periodic crystals lead to the coexistence of both accelerated and inhibited decay processes. The decay behaviors of line antennas are drastically changed as the locations of the antennas are varied from the center to the edge in quasi-periodic photonic crystals and the location of transition frequency is varied.
Resumo:
The dynamics of spontaneous emission from GaAs slabs with photonic crystals etched into them are investigated both theoretically and experimentally. It is found that the intensity of spontaneous emission decreases significantly and that photonic crystals significantly shorten the lifetime of emission. The mechanics of enhancement and the reduction of emission from photonic crystals are analyzed by considering the surface recombination of GaAs. The measured and calculated lifetimes agree at a surface recombination velocity of 1.88x10(5) cm/s.
Resumo:
A two dimensional silicon-on-insulator based photonic crystal structure is used to enhance the emission from colloidal HgTe nanocrystal quantum dots embedded in a thin polymer film. The enhancement is resonant to the leaky eigenmodes of the photonic crystals due to coherent scattering effects. Transmittance and photoluminescence experiments are presented to map the leaky mode dispersion and the angle dependence of the emission enhancement factor, which reaches values up to 80 (650) for vertical (oblique) emission in the telecommunication wavelength range.
Resumo:
The authors developed an inductively coupled plasma etching process for the fabrication of hole-type photonic crystals in InP. The etching was performed at 70 degrees C using BCl3/Cl-2 chemistries. A high etch rate of 1.4 mu m/min was obtained for 200 nm diameter holes. The process also yields nearly cylindrical hole shape with a 10.8 aspect ratio and more than 85 degrees straightness of the smooth sidewall. Surface-emitting photonic crystal laser and edge emitting one were demonstrated in the experiments.