388 resultados para LIDT Single-pulse laser


Relevância:

50.00% 50.00%

Publicador:

Resumo:

Laser induced damage threshold (LIDT) of multi-layer dielectric used in pulse compressor gratings (PCG) was investigated. The sample was prepared by e-beam evaporation (EBE). LIDT was detected following ISO standard 11254-1.2. It was found that LIDTs of normal and 51.2 deg. incidence (transverse electric (TE) mode) were 14.14 and 9.31 J/cm2, respectively. A Nomarski microscope was employed to map the damage morphology, and it was found that the damage behavior was pit-concave-plat structure for normal incidence, while it was pit structure for 51.2 deg. incidence with TE mode. The electric field distribution was calculated to illuminate the difference of LIDT between the two incident cases.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

In this work, a novel light source of tandem InGaAsP/InGaAsP multiple quantum well electroabsoption modulator( EAM ) monolithically integrated with distributed feedback laser is fabricated by ultra-low-pressure ( 22 x 10(2) Pa ) selective area growth metal-organic chemical vapor diposition technique. Superior device performances have been obtained, such as low threshold current of 19 mA, output light power of 4.5 mW, and over 20 dB extinction ratio at 5 V applied voltage when coupled into a single mode fiber. Over 10 GHz 3dB bandwidth in EAM part is developed with a driving voltage of 2 V. Using this sinusoidal voltage driven integrated device, 10 GHz repetition rate pulse with an actual width of 13.7 ps without any compression elements is obtained due to the gate operation effect of tandem EAMs.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

A novel device of tandem multiple quantum wells (MQWs) electroabsorption modulators (EAMs) monolithically integrated with DFB laser is fabricated by ultra-low-pressure (22 mbar) selective area guowth (SAG) MOCVD technique. Experimental results exhibit superior device characteristics with low threshold of 19 mX output light power of 4.5 mW and over 20 dB extinction ratio when coupled into a single mode Fiber. Moreover, over 10 GHz modulation bandwidth is developed with a driving voltage of 2 V. Using I this sinusoidal voltage driven integrated device, 10GHz repetition rate pulse with a width of 13.7 ps without any compression elements is obtained.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Bacteriorhodopsin (BR) films oriented by an electrophoretic method are deposited on a transparent conductive ITO glass. A counterelectrode of copper and gelose gel is used to compose a sandwich-type photodetector with the structure of ITO/BR film/gelose gel/Cu. A single 30-ps laser pulse and a mode-locked pulse train are respectively used to excite the BR photodetector. The ultrafast failing edge and the bipolar response signal are measured by the digital oscilloscope under seven different time ranges. Marquardt nonlinear least squares fitting is used to fit all the experimental data and a good fitting equation is found to describe the kinetic process of the photoelectric signal. Data fitting resolves six exponential components that can be assigned to a seven-step BR photocycle model: BR-->K-->KL-->L-->M-->N-->O-->BR. Comparing tests of the BR photodetector with a 100-ps Si PIN photodiode demonstrates that this type of BIR photocletector has at least 100-ps response time and can also serve as a fast photoelectric switch. (C) 2003 Society of Photo-Optical Instrumentation Engineers.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present a novel high-energy, single-mode, all-fiber-based master-oscillator-power-amplifier (MOPA) laser system operating in the C-band with 3.3-ns pulses and a very widely tunable repetition rate, ranging from 30 kHz to 50 MHz. The laser with a maximum pulse energy of 25 mu J and a repetition rate of 30 kHz is obtained at, a wavelength of 1548 nm by using a double-clad, single-mode, Er:Yb co-doped fiber power amplifier.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A 3-D numerical model for pulsed laser transformation hardening (LTH) is developed using the finite element method. In this model, laser spatial and temporal intensity distribution, temperature-dependent thermophysical properties of material, and multi-phase transformations are considered. The influence of laser temporal pulse shape on connectivity of hardened zone, maximum surface temperature of material and hardening depth is numerically investigated at different pulse energy levels. Results indicate that these hardening parameters are strongly dependent on the temporal pulse shape. For the rectangular temporal pulse shape, the temperature field obtained from this model is in excellent agreement with analytical solution, and the predicted hardening depth is favorably compared with experimental one. It should be pointed out that appropriate temporal pulse shape should be selected according to pulse energy level in order to achieve desirable hardening quality under certain laser spatial intensity distribution.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pulsed laser beam was used to modify surface processing for ductile iron. The microstructures of processed specimen were observed using optical microscope (OM). Nanoindentation and micro-hardness of microstructures were measured from surface to inner of sample. The experimental results show that, modification zone is consisted of light melted zone, phase transformation hardening area and transient area. The light melt area is made up of coarse dendrite crystalline with a thickness less than 20um, phase transformation hardening area mainly of laminal or acicular martensite, retained austenite and graphite, i.e. M+A prime+ G. The cow-eye microstructure around graphite sphere always is formed in phase transformation hardening area zone, which consisting of a variety structure with the distance from the surface. So, it maybe as a obvious sign distinguishing modification zone border. Finally, the microstructures evolution of laser pulse processed ductile iron was analyzed coupling with beam energy distribution in space and laser pulse heating procession characteristics. The analysis shows that energy distribution of laser pulse has an important effect on microstructure during laser pulse modified ductile iron. Multi-scale and interlace arrangement are the important features for laser pulse modified ductile iron. Of microstructure.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A Nd:glass regenerative amplifier has been set up to generate the pumping pulse with variable pulse width for an optical parametric chirped-pulse amplification (OPCPA) laser system. Each pulse of the pulse train from a cw self-mode-locking femtosecond Ti:sapphire oscillator is stretched to approximate to300 ps at 1062 nm to be split equally and injected into a nonlinear crystal and the Nd:glass regenerative amplifier, as the chirped signal pulse train and the seed pulse train of the pumping laser system, respectively. By adjusting the cavity length of the regenerative amplifier directly, the width of amplified pulse could be varied continuously from approximate to300 ps to approximate to3 ns. The chirped signal pulse for the OPCPA laser system and the seed pulse for the pumping laser system come from the same oscillator, so that the time jitter between the signal pulse and the pumping pulse in optical parametric amplification stages could be <10 ps. (C) 2003 Society of Photo-Optical Instrumentation Engineers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effect of temporal synchronization between the chirped signal pulse and the pumping pulse in an optical parametric chirped pulse amplification laser system is researched theoretically and experimentally. The results show that the gain of optical parametric amplification is sensitive to the temporal synchronization. Therefore, accurate temporal synchronization between the chirped signal pulse and the pumping pulse is essential to obtain high optical parametric amplification gain and stable output from an optical parametric chirped pulse amplification laser. Based on our 16.7-TW/120-fs optical parametric chirped pulse amplification laser system with similar to1-ns pumping pulse duration and <10-ps time jitter between the signal and pumping pulse, the effect of the temporal synchronization on optical parametric chirped pulse amplification is demonstrated. The experimental results agree with the calculation. (C) 2004 Society of Photo-Optical Instrumentation Engineers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A compact multiterawatt laser system based on optical parametric chirped pulse amplification is demonstrated. Chirped pulses are amplified from 20 pJ to 900 mJ by two lithium triborate optical parametric preamplifiers and a final KDP optical parametric power amplifier with a pump energy of 5 J at 532 nm from Nd:YAG-Nd: glass hybrid amplifiers, After compression, we obtained a final output of 570-mJ-155-fs pulses with a peak power of 3.67 TW, which is the highest output power from an optical parametric chirped pulse amplification laser, to the best of our knowledge. (C) 2002 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Rhodamine 6G (R6G) was incubated in silver sols with different low concentrations and its surface-enhanced resonance Raman scattering (SERRS) spectra, excited by linearly and circularly polarized light, respectively, were studied. At the single-molecule level the SERRS spectra were recorded in 10(-13) M dye colloidal solution. Spectral inhomogeneous behaviors from single-molecule were observed such as spectral polarization, spectral diffusion and intensity fluctuations of vibrational lines. Difference between SERRS spectra of R6G excited by linearly and circularly polarized light and the effect of the polarizing angle of Raman signal relative to the slit of spectrograph on the Raman spectral polarization were analyzed and measured experimentally. Circularly polarized laser and the correction of the polarizing angle of Raman signal are necessary to avoid fake results in the measuring of Raman spectral of single-molecule, which was not noticed in initial papers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report on the upconversion luminescence of a pure YVO4 single crystal excited by an infrared femtosecond laser. The luminescent spectra show that the upconversion luminescence comes from the transitions from the lowest excited states T-3(1), T-3(2) to the ground state (1)A(1) of the VO43-. The dependence of the fluorescence intensity on the pump power density of laser indicates that the conversion of infrared irradiation to visible emission is dominated by three-photon excitation process. We suggest that the simultaneous absorption of three infrared photons promotes the VO43- to excited states, which quickly cascade down to lowest excited states, and radiatively relax to ground states, resulting in the broad characteristic fluorescence of VO43-. (c) 2005 Optical Society of America.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The dynamics and harmonics emission spectra due to electron oscillation driven by intense laser pulses have been investigated considering a single electron model. The spectral and angular distributions of the harmonics radiation are numerically analyzed and demonstrate significantly different characteristics from those of the low-intensity field case. Higher-order harmonic radiation is possible for a sufficiently intense driving laser pulse. A complex shifting and broadening structure of the spectrum is observed and analyzed for different polarization. For a realistic pulsed photon beam, the spectrum of the radiation is redshifted for backward radiation and blueshifted for forward radiation, and spectral broadening is noticed. This is due to the changes in the longitudinal velocity of the electron during the laser pulse. These effects are much more pronounced at higher laser intensities giving rise to even higher-order harmonics that eventually leads to a continuous spectrum. Numerical simulations have further shown that broadening of the high harmonic radiation can be limited by increasing the laser pulse width. The complex shifting and broadening of the spectra can be employed to characterize the ultrashort and ultraintense laser pulses and to study the ultrafast dynamics of the electrons. (c) 2006 American Institute of Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Protons with very high kinetic energy of about 10keV and the saturation effect of proton energy for laser intensity have been observed in the interaction of an ultrashort intense laser pulse with large-sized hydrogen clusters. Including the cluster-size distribution as well as the laser-intensity distribution on the focus spot, the theoretical calculations based on a simplified Coulomb explosion model have been compared with our experimental measurements, which are in good agreement with each other.