142 resultados para Intracellular Injection
Resumo:
G chemically modified electrode (CME) was prepared by electrochemical copolymerization of pyrrole and Methylene Blue. The resulting CME exhibits effective electrocatalytic activity towards the oxidation of reduced nicotinamide coenzymes (NADH and NADPH),
Resumo:
Amperometic flow measurements were made at +0.55 V (vs. Ag/AgCl) in 0.1 mol l-1 KOH electrolyte with an Ni(II) chemically modified electrode (CME) with an Eastman-AQ polymer film. The use and characteristics of a Ni(II)-containing crystalline and polymer-modified electrode obtained by a double coating step as a detector for amino acids in a flow-injection system using reversed-phase liquid chromatography are described. The detection of these analytes is based on the higher oxidation state of nickel (NiOOH) controlled by the applied potential. The electroanalytical parameters and the detection current for a series of amines and amino acids were investigated. The use of such a CME in the flow-injection technique was found to be suitable in a solution at low pH. The linear range for glycine is 5 X 10(-6)-0.1 mol 1-1 with a detection limit of 1.0 X 10(-6) mol l-1. A 1 X 10(-4) mol 1-1 mixture of serine and tyrosine was also detected after separation on an Nucleosil C18 column.
Resumo:
A glassy carbon electrode (GCE) modified with palladium provides excellent electrocatalytic oxidation of hydrogen peroxide. When the electrolyte contains palladium chloride and glucose oxidase, the GCE can be modified by electrochemical codeposition at a given potential. The resulting modified surface was coated with a thin film of Nation to form a glucose sensor. Such a glucose sensor was successfully used in the flow-injection analysis of glucose with high stability and anti-poisoning ability. It gave a detection limit of 1 X 10(-7) M injected glucose, with a linear concentration range of 0.001-8 mM. There is no obvious interference from substances such as ascorbate and saccharides.
Resumo:
A Prussian Blue-modified glassy carbon electrode prepared by simple adsorption exhibited excellent electrocatalytic activity in the oxidation of hydrazine in acidic media. A film of the perfluorosulphonic acid polymer Nafion coated on top of the Prussian Blue-modified glassy carbon electrode can improve the mechanical stability of the Prussian Blue layer in the flow stream. Hydrazine was detected by flow-injection analysis at the modified electrode with high sensitivity. The limit of detection was 0.6 ng.
Resumo:
Chemically modified electrodes prepared by treating the cobalt tetraphenylporphyrin modified glassy-carbon electrode at 750-degrees (HCME) are shown to catalyze the electrooxidation of hydrazine. The oxidation occurred at +0.63 V vs. Ag/AgCl (saturated potassium chloride) in pH 2.5 media. The catalytic response is evaluated with respect to solution pH, potential scan-rate, concentration dependence and flow-rate. The catalytic stability of the HCME is compared with that of the cobalt tetraphenylporphyrin adsorbed glassy-carbon electrode. The stability of the HCME was excellent in acidic solution and even in solutions containing organic solvent (50% CH3OH). When used as the sensing electrode in amperometric detection in flow-injection analysis, the HCME permitted sensitive detection of hydrazine at 0.5 V. The limit of detection was 0.1 ng. The linear range was from 50 ng to 2.4-mu-g. The method is very sensitive and selective.
Resumo:
A novel Eastman-AQ/Ni(II) chemically modified electrode (CME) produced by "double coating step" deposition of a poly(ester sulphonic acid) polymer film and Ni2+-containing crystalline species onto glassy carbon instead of a metallic nickel electrode exhibited stable electrocatalytic oxidation of numerous alpha-hydrogen compounds including carbohydrates, amines and amino acids. In cyclic voltammetry, the electrocatalysis appeared with an irreversible anodic wave at +0.55 V (vs. Ag/AgCl). The CME was adapted for constant-potential amperometric detection of these compounds in flow injection analysis. Using the CME, the linear response concentration range was between 1.0 x 10(-5) and 5.0 x 10(-2) mol/l and the detection limit was 5.0 x 10(-6) mol/l for glucose. The stability of the CME was adequate for routine quantitative application.
Resumo:
An electrochemical detector based on a polyaniline conducting polymer chemically modified electrode (PAn CME) was developed for use in flow-injection analysis and ion chromatography. Iodide, bromide, thiocyanate and thiosulphate are detected by using ion chromatography with a PAn CME electrochemical detector. The detection limits are 1, 5, 10 and 10 mgl-1, respectively. The CME response for electroinactive anions varies selectively with the mobile phase composition in flow-injection analysis. By this approach, perchlorate, sulphate, nitrate, iodide, acetate and oxalate can be detected conveniently and reproducibly over a linear concentration range of at least 3 orders of magnitude. The electrode is stable for over 2 weeks with no evidence of chemical or mechanical deterioration.
Resumo:
Electrodeposition of the phenothiazine mediator titrant toluidine blue onto a glassy carbon substrate at an appropriate potential was used to construct a toluidine blue chemically modified electrode (CME) exhibiting electrocatalytic reduction for myoglobin and hemoglobin. The CME catalyzed the hemoprotein electroreduction at the reduction potential of the mediator molecule. When the CME as used as a detector for flow injection analysis at a constant applied potential of -0.30 V vs. a saturated calomel electrode, it gave detection limits of 20 and 50 ng (1.2 and 0.78 pmol) injected myoglobin and hemoglobin, respectively, with a dynamic linear concentration range over 2 orders of magnitude. After a brief equilibration period, the CME retained nearly 90% of its initial myoglobin response over 8 hours of continuous exposure to the flow-through system.
Resumo:
The use of chemically modified electrodes (CMEs) for liquid chromatography and flow-injection analysis is reviewed. Electrochemical detection with CMEs based on electrocatalysis, permselectivity, ion flow in redox films, and ion transfer across the water-solidified nitrobenzene interface is discussed in terms of improving the stability, selectivity, and scope of electrochemical detectors, and the detection of electroinactive substances. More than 90 references are included.
Resumo:
CpG oligodeoxynucleotides (ODNs) can stimulate the immune system, and therefore are widely used as a therapeutic vaccination and immune adjuvant in human. In the present study, CpG-C, a combination of A- and B-class ODN, was injected into Chinese mitten crab Eriocheir sinensis at three doses (0.1, 1 and 10 mu g crab-1), and the reactive oxygen species (ROS) levels, activities of total intracellular phenoloxidase (PO) and lysozyme-like activities, the mRNA transcripts of EsproPO, EsCrustin and EsALF were assayed to evaluate its modulating effects on the immune system of crab. The ROS levels in all treated and control groups were significantly increased from 6 to 24 h, except that ROS in 0.1 mu g CpG-C-treated crabs was comparable to that of the blank at 6 h. The PO activity was significantly enhanced and EsproPO transcripts were down-regulated (P < 0.01) at 6 h after the injection of 0.1 mu g CpG-C, with no significant changes in the other dosage treatments. The lysozyme-like activities and EsCrustin transcripts in the CpG-C-treatment groups were significantly higher than those of controls. The mRNA expression of EsALF remained almost constant in all the groups during the treatment. These results collectively suggested that CpG-C could activate the immune responses of E. sinensis, and might be used as a novel immunostimulant for disease control in crabs.
Resumo:
CpG oligodeoxynucleotides (ODNs) can stimulate the immune system, and therefore are widely used as a therapeutic vaccination and immune adjuvant in human. In the present study, CpG-C, a combination of A- and B-class ODN, was injected into Chinese mitten crab Eriocheir sinensis at three doses (0.1, 1 and 10 mu g crab-1), and the reactive oxygen species (ROS) levels, activities of total intracellular phenoloxidase (PO) and lysozyme-like activities, the mRNA transcripts of EsproPO, EsCrustin and EsALF were assayed to evaluate its modulating effects on the immune system of crab. The ROS levels in all treated and control groups were significantly increased from 6 to 24 h, except that ROS in 0.1 mu g CpG-C-treated crabs was comparable to that of the blank at 6 h. The PO activity was significantly enhanced and EsproPO transcripts were down-regulated (P < 0.01) at 6 h after the injection of 0.1 mu g CpG-C, with no significant changes in the other dosage treatments. The lysozyme-like activities and EsCrustin transcripts in the CpG-C-treatment groups were significantly higher than those of controls. The mRNA expression of EsALF remained almost constant in all the groups during the treatment. These results collectively suggested that CpG-C could activate the immune responses of E. sinensis, and might be used as a novel immunostimulant for disease control in crabs.
Resumo:
Viperin is an antiviral protein that has been found to exist in diverse vertebrate organisms and is involved in innate immunity against the infection of a wide range of viruses. However, it is largely unclear as to the potential role played by viperin in bacterial infection. In this study, we identified the red drum Sciaenops ocellatus viperin gene (SoVip) and analyzed its expression in relation to bacterial challenge. The complete gene of SoVip is 2570 bp in length and contains six exons and five introns. The open reading frame of SoVip is 1065 bp, which is flanked by a 5'-untranslated region (UTR) of 34 bp and a 3'-UTR of 350 bp. The deduced amino acid sequence of SoVip shares extensive identities with the viperins of several fish species and possesses the conserved domain of the radical S-adenosylmethionine superfamily proteins. Expressional analysis showed that constitutive expression of SoVip was relatively high in blood, muscle, brain, spleen, and liver, and low in kidney, gill, and heart. Experimental challenges with poly(I:C) and bacterial pathogens indicated that SoVip expression in liver was significantly upregulated by poly(I:C) and the fish pathogen Edwardsiella tarda but down-regulated by the fish pathogens Listonella anguillarum and Streptococcus iniae. Similar differential induction patterns were also observed at cellular level with primary hepatocytes challenged with E. tarda, L anguillarum, and S. iniae. Infection study showed that all three bacterial pathogens could attach to cultured primary hepatocytes but only E. tarda was able to invade into and survive in hepatocytes. Together these results indicate that SoVip is involved in host immune response during bacterial infection and is differentially regulated at transcription level by different bacterial pathogens. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The marine Roseobacter clade comprises one of the largest fractions of heterotrophic marine bacteria and accounts for about 16% of 16S rRNA gene clones retrieved from marine bacterioplankton. Their global distribution seems to be related to oceanic water masses and their environmental and biogeochemical properties. In this study, we report isolation and characterization of novel Roseobacter clade members from the Yellow Sea, China. Phylogenetic analysis of 16S rRNA gene sequences reveals that the new isolates (YSCB1, YSCB2, YSCB3 and YSCB4) are closely related to uncultured Arctic seawater bacterium R7967 (99.57-100% sequence identity) and to the cultured Roseobacter sp. DSS-1 (99.27-99.76% sequence identity) isolated from the southeastern coastal water of the USA. Interestingly, YSCB strains possess unique intracellular chromium-containing aggregates. Therefore, these novel Roseobacter clade members exhibit a peculiar property in mineral biogeneration. (c) 2006 Elsevier SAS. All rights reserved.