131 resultados para High-Birefringence Fiber


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An eigenfunction expansion-variational method based on a unit cell is developed to deal with the steady-state heat conduction problem of doubly-periodic fiber reinforced composites with interfacial thermal contact resistance or coating. The numerical results show a rapid convergence of the present method. The present solution provides a unified first-order approximation formula of the effective thermal conductivity for different interfacial characteristics and fiber distributions. A comparison with the present high-order results, available experimental data and micromechanical estimations demonstrates that the first-order approximation formula is a good engineering closed-form formula. An engineering equivalent parameter reflecting the overall influence of the thermal conductivities of the matrix and fibers and the interfacial characteristic on the effective thermal conductivity, is found. The equivalent parameter can greatly simplify the complicated relation of the effective thermal conductivity to the internal structure of a composite. (c) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For steady-state heat conduction a new variational functional for a unit cell of composites with periodic microstructures is constructed by considering the quasi-periodicity of the temperature field and in the periodicity of the heat flux fields. Then by combining with the eigenfunction expansion of complex potential which satisfies the fiber-matrix interface conditions, an eigenfunction expansion-variational method (EEVM) based on a unit cell is developed. The effective transverse thermal conductivities of doubly-periodic fiber reinforced composites are calculated, and the first-order approximation formula for the square and hexagonal arrays is presented,which is convenient for engineering application. The numerical results show a good convergency of the presented method, even through the fiber volume fraction is relatively high. Comparisons with the existing analytical and experimental results are made to demonstrate the accuracy and validity of the first-order approximation formula for the hexagonal array.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High-speed free-space optical communication systems have recently used fiber-optical components. The coupling efficiency with which the received laser beam can be coupled into a single-mode fiber is noticeably limited by atmospheric turbulence due to the degradation of its spatial coherence. Fortunately, adaptive optics (AO) can alleviate this limitation by partially correcting the turbulence-distorted wavefront. The coupling efficiency improvement provided by Zernike modal AO correction is numerically evaluated. It is found that the first 3-20 corrected polynomials can considerably improve the fiber-coupling efficiency. The improvement brought by AO is compared with that brought by a coherent fiber array. Finally, a hybrid technique that integrates AO and a coherent fiber array is proposed. Results show that the hybrid technique outperforms each of the two above-mentioned techniques. (C) 2009 Elsevier GmbH. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

NaA zeolite membrane was successfully synthesized on a ceramic hollow fiber with an outer diameter of 400 mum, a thickness of 100 mum and an average pore radius of 0.1 mum. The as-synthesized membranes were characterized by XRD, SEM as well as gas permeation. A continuous C NaA zeolite membrane formed after a three-stage synthesis. The membrane thickness was similar to5 mum. Gas permeation data indicated that a relatively high quality NaA zeolite membrane formed on the ceramic hollow fiber support. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Adoption of a sintered stainless steel fiber felt was evaluated as gas diffusion backing in air-breathing direct methanol fuel cell (DMFC). By using a sintered stainless steel fiber felt as an anodic gas diffusion backing, the peak power density of an air-breathing DMFC is 24 mW cm(-2), which is better than that of common carbon paper. A 30-h-life test indicates that the degraded performance of the air-breathing DMFC is primarily due to the water flooding of the cathode. Twelve unit cells with each has 6 cm(2) of active area are connected in series to supply the power to a mobile phone assisted by a constant voltage diode. The maximum power density of 26 mW cm(-2) was achieved in the stack, which is higher than that in single cell. The results show that the sintered stainless steel felt is a promising solution to gas diffusion backing in the air-breathing DMFC, especially in the anodic side because of its high electronical conductivity and hydrophilicity. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mixtures of methanol/MTBE were separated with polyimide/sulfonated poly(ether-sulfone) hollow-fiber membranes. The separation was attempted by vapor permeation instead of pervaporation, which had been used by most researchers. The separation properties of the hollow-fiber membranes and operating conditions are discussed. The results showed that separation factors of the blended polyimide/sulfonated poly(ether-sulfone) hollow-fiber membranes were extremely high for the methanol/MTBE mixtures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The PVP/lanthanum nitrate/zirconium oxychloride (PVP-precursor) nanofiber was prepared by electrospinning technique. Lanthanum zirconate (La2Zr2O7, LZ) in the nanofiber is formed after calcination at 800 degrees C and the nanofiber with pyrochlore structure and a diameter of 100-500 nm can be obtained by calcination of the above precursor fiber at 1000 degrees C for 12 h. The surface of the fiber is rough but the continuous microstructure is still maintained after calcination. LZ fibers stack randomly, resulting in a structure with a low contact area between the fibers. This special structure makes the fiber to have a high resistance to sintering at elevated temperatures. The BET (Brunauer-Emmett-Teller) specific surface areas of the LZ fiber and powder calcined at different temperatures are shown in this paper, and the fiber was characterized by TG-DTA (thermal gravimetry-differential thermal analysis), XRD (X-ray diffraction), N-2 absorption-desorption porosimetry and SEM (scanning electron microscopy).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Electrochemical detection of five species of aromatic amines at a carbon fiber microdisk electrode after separation by capillary electrophoresis is described. Under the optimum conditions, the detection limit for 3,4-dihydroxybenzylamine, N,N-dimethylaniline, p-phenylenediamine, p-aminophenol and aniline sulfate was 0.9, 0.03, 0.075, 1.2 and 0.15 mu M (S/N = 3), respectively. The linear response range was 5-1000, 0.1-500, 0.5-500, 5-500 and 1-200 mu M, respectively The effect of the electrode position and buffer pH on the detection was also studied. This method is very simple, sensitive and stable for the detection of these compounds.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed a special color film with negative birefringence, which can work as a color filter and a viewing angle extension film for liquid crystal displays (LCDs). A high-performance polyimide (PI), which can be dissolved in the usual organic solvent and shows negative birefringence after lamination, was synthesized to fabricate the film. By mixing PI with suitable proportions of green, blue or red pigment in the solvent, then laminating them onto a glass substrate, we obtained color films with good transmission spectra and suitable chromatic coordinates. The results of our experiments show that the color filters still have negative birefringence but a little lower than that of the pure PI film. and can therefore work as compensation films for normal white twist nematic liquid crystal displays (TN-LCD).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A highly dispersed ultramicro palladium-particle modified carbon fiber microdisk array electrode (Pd-CFE) was employed for capillary electrophoresis-electrochemical (CEEC) detection of hydroxylamine (HA). The Pd particles obtained were in the nanometer scale, had a high electrocatalytic activity towards HA and exhibited good reproducibility and stability. A linear relationship between the current and the analyte concentration was found between 5 x 10(-6) and 1 x 10(-3) mol/l of HA with a correlation coefficient of 0.9992. The detection limit was 5 x 10(-8) mol/l. The applicability of the method for the determination of HA in river water and waste water was investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The redox behaviours of 12-molybdophosphoric acid (12-MPA) and 12-molybdosilicic acid (12-MSA) in aqueous acid media are characterized at the carbon fiber (CF) microelectrode. The preparation of CF microelectrode modified with 12-MPA or 12-MSA monolayer and the oxidation-reduction properties of the modified electrode in aqueous acid media or 50% (v/v) water-organic media containing some inorganic acids are studied by cyclic voltammetry. 12-MPA or 12-MSA monolayer modified CF microelectrode with high stability and redox reversibility in aqueous acidic media can be prepared by simple dip coating. The cyclic voltammograms of 12-MPA and 12-MSA and their modified CF microelectrodes in aqueous acid solution exhibit three two-electron reversible waves with the same half-wave potentials, which defines that the species adsorbed on the CF electrode surface are 12-MPA and 12-MSA themselves. The acidity of electrolyte solution, the organic solvents in the electrolyte solution, and the scanning potential range strongly influence on the redox behaviours and stability of 12-MPA or 12-MSA monolayer modified electrodes. On the other hand, the catalytic effects of the 12-MPA and 12-MSA and chlorate anions in aqueous acidic solution on the electrode reaction processes of 12-MPA or 12-MSA are described.