130 resultados para High frequency inversion
Resumo:
The biothermocatalytic transitional zone gas is a new type of natural gas genetic theory, and also an clean, effective and high quality energy with shallow burial depth, wide distribution and few investment. Meanwhile, this puts biothermocatalytic transitional zone gas in important position to the energy resource and it is a challenging front study project. This paper introduces the concept, the present situation of study and developmental trend about biothermocatalytic transitional zone gas in detail. Then by using heat simulating of source rocks and catalysis mechanism analysis in the laboratory and studying structural evolution, sedimentation, diagenesis and the conditions of accumulation formation and so on, this paper also discusses catalytic mechanism and evolutionary model of the biothermocatalytic transitional zone gas formation, and establishes the methods of appraisal parameter and resources prediction about the biothermocatalytic transitional zone gas. At last, it shows that geochemical characteristics and differentiated mark of the biothermocatalytic transitional zone gas, and perfect natural gas genetic theory, and points out the conditions of accumulation formation, distribution characteristics and potential distribution region on the biothermocatalytic transitional zone gas m China. The paper mainly focuses on the formation mechanism and the resources potential about the biothermocatalytic transitional zone gas. Based on filed work, it is attached importance to a combination of macroscopic and microcosmic analysis, and the firsthand data are obtained to build up framework and model of the study by applying geologic theory. Based on sedimentary structure, it is expounded that structural actions have an effect on filling space and developmental cource of sediments and evolution of source rocks. Carried out sedimentary environment, sequence stratigraphy, sedimentary system and diagenesis and so on, it is concluded that diagenesis influences developmental evolution of source rocks, and basic geologic conditions of the biothermocatalytic transitional zone gas. Applying experiment simulating and catalytic simulating as well as chemical analysis, catalytic mechanism of clay minerals is discussed. Combined diagenecic dynamics with isotope fractionation dynamics, it is established that basis and method of resource appraisal about the biothermocatalytic transitional zone gas. All these results effectively assess and predict oil&gas resources about the biothermocatalytic transitional zone gas-bearing typical basin in China. I read more than 170 volumes on the biothermocatalytic transitional zone gas and complete the dissertation' summary with some 2.4 ten thousand words, draw up study contents in some detail and set up feasible experimental method and technologic course. 160 pieces of samples are obtained in oilfield such as Liaohe, Shengli, Dagang and Subei and so on, some 86 natural gas samples and more than 30 crude oil samples. Core profiles about 12 wells were observed and some 300 geologic photos were taken. Six papers were published in the center academic journal at home and abroad. Collected samples were analysised more than 1000 times, at last I complete this dissertation with more than 8 ten thousand words, and with 40 figures and 4 plates. According to these studies, it is concluded the following results and understandings. 1. The study indicates structural evolution and action of sedimentary basin influence and control the formation and accumulation the biothermocatalytic transitional zone gas. Then, the structural action can not only control accommodation space of sediments and the origin, migration and accumulation of hydrocarbon matters, but also can supply the origin of energy for hygrocarbon matters foramtion. 2. Sedimentary environments of the biothermocatalytic transitional zone gas are lake, river and swamp delta- alluvial fan sedimentary systems, having a warm, hot and humid climate. Fluctuation of lake level is from low to high., frequency, and piling rate of sedimentary center is high, which reflect a stable depression and rapidly filling sedimentary course, then resulting in source rocks with organic matter. 3. The paper perfects the natural gas genetic theory which is compound and continuous. It expounds the biothermocatalytic transitional zone gas is a special gas formation stage in continuous evolutionary sequence of organic matter, whose exogenic force is temperture and catalysis of clay minerals, at the same time, having decarbxylation, deamination and so on. 4. The methodology is established which is a combination of SEM, TEM and Engery spectrum analysis to identify microstructure of crystal morphology about clay minerals. Using differential thermal-chromatographic analysis, it can understand that hydrocarbon formation potential of different typies kerogens and catalytic method of all kinds of mineral matrix, and improve the surface acidity technology of clay minerals measured by the pyridine analytic method. 5. The experiments confirm catalysis of clay minerals to organic matter hygrocarbon formation. At low temperature (<300 ℃), there is mainly catalysis of montmorillonite, which can improve 2-3 times about produced gas of organic matters and the pyrolyzed temperature decreased 50 ℃; while at the high temperature, there is mainly catalysis of illite which can improve more than 2 times about produced gas of organic matters. 6. It is established the function relationship between organic matter (reactant) concentration and temperature, pressure, time, water and so on, that is C=f (D, t). Using Rali isotope fractionation effect to get methane isotope fractionation formula. According to the relationship between isotope fractionation of diagenesis and depth, and combined with sedimentary rate of the region, it is estimated that relict gas of the biothermocatalytic transitional zone gas in the representative basin. 7. It is revealed that hydrocarbon formation mechanism of the biothermocatalytic transitional zone gas is mainly from montmorillonite to mixed minerals during diagenesis. In interlayer, a lot of Al~(3+) substitute for Si~(4+), resulting in a imbalance between surface charge and interlayer charge of clay minerals and the occurrence of the Lewis and Bronsted acid sites, which promote to form the carbon cation. The cation can form alkene or small carbon cation. 8. It is addressed the comprehensive identification mark of the biothermo - catalytic transitional zone gas. In the temproal-spatial' distribution, its source rocks is mainly Palaeogene, secondly Cretaceous and Jurassic of Mesozoic, Triassic, having mudy rocks and coal-rich, their organic carbon being 0.2% and 0.4% respectively. The vitrinite reflection factor in source rocks Ro is 0.3-0.65%, a few up to 0.2%. The burial depth is 1000-3000m, being characterized by emerge of itself, reservoir of itself, shallow burial depth. In the transitional zone, from shallow to deep, contents of montmorillonites are progressively reduced while contents of illites increasing. Under SEM, it is observed that montmorillonites change into illite.s, firstly being mixed illite/ montmorillonite with burr-like, then itlite with silk-like. Carbon isotope of methane in the biothermocatatytic transitional zone gas , namely δ~(13)C_1-45‰- -60 ‰. 9. From the evolutionary sequence of time, distribution of the biothermocatalytic transitional zone gas is mainly oil&gas bearing basin in the Mesozoic-Neozoic Era. From the distribution region, it is mainly eastern stuctural active region and three large depressions in Bohaiwang basin. But most of them are located in evolutionary stage of the transitional zone, having the better relationship between produced, reservoir and seal layers, which is favorable about forming the biothermocatalytic transitional zone gas reservoir, and finding large gas (oil) field.
Resumo:
Seismic exploration is the main tools of exploration for petroleum. as the society needs more petroleum and the level of exploration is going up, the exploration in the area of complex geology construction is the main task in oil industry, so the seismic prestack depth migration appeared, it has good ability for complex construction imaging. Its result depends on the velocity model strongly. So for seismic prestack depth migration has become the main research area. In this thesis the difference in seismic prestack depth migration between our country and the abroad has been analyzed in system. the tomographical method with no layer velocity model, the residual curve velocity analysical method based on velocity model and the deleting method in pre-processing have been developed. In the thesis, the tomographysical method in velocity analysis is been analyzed at first. It characterized with perfection in theory and diffculity in application. This method use the picked first arrivial, compare the difference between the picked first arrival and the calculated arrival in theory velocity model, and then anti-projected the difference along the ray path to get the new velocity model. This method only has the hypothesis of high frequency, no other hypothesis. So it is very effective and has high efficiency. But this method has default still. The picking of first arrival is difficult in the prestack data. The reasons are the ratio of signal to noise is very low and many other event cross each other in prestack data. These phenomenon appear strongly in the complex geology construction area. Based on these a new tomophysical methos in velocity analysis with no layer velocity model is been developed. The aim is to solve the picking problem. It do not need picking the event time contiunely. You can picking in random depending on the reliability. This methos not only need the pick time as the routine tomographysical mehtod, but also the slope of event. In this methos we use the high slope analysis method to improve the precision of picking. In addition we also make research on the residual curve velocity analysis and find that its application is not good and the efficiency is low. The reasons is that the hypothesis is rigid and it is a local optimizing method, it can solve seismic velocity problem in the area with laterical strong velocity variation. A new method is developed to improve the precision of velocity model building . So far the pattern of seismic prestack depth migration is the same as it aborad. Before the work of velocity building the original seismic data must been corrected on a datum plane, and then to make the prestack depth migration work. As we know the successful example is in Mexico bay. It characterized with the simple surface layer construction, the pre-precessing is very simple and its precision is very high. But in our country the main seismic work is in land, the surface layer is very complex, in some area the error of pre-precessing is big, it affect the velocity building. So based on this a new method is developed to delete the per-precessing error and improve the precision of velocity model building. Our main work is, (1) developing a effective tomographical velocity building method with no layer velocity model. (2) a new high resolution slope analysis method is developed. (3) developing a global optimized residual curve velocity buliding method based on velocity model. (4) a effective method of deleting the pre-precessing error is developing. All the method as listed above has been ceritified by the theorical calculation and the actual seismic data.
Resumo:
Mudstone reservoir is a subtle reservoir with extremely inhomogeneous, whose formation is greatly related to the existence of fracture. For this kind of reservoir, mudstone is oil source rock, cover rock and reservoir strata, reservoir type is various, attitude of oil layer changes greatly, and the distribution of oil and gas is different from igneous or clastic rock reservoir as well as from carbonate reservoir of self-producing and self-containing of oil and gas. No mature experience has been obtained in the description, exploration and development of the reservoir by far. Taking Zhanhua depression as an example, we studied in this thesis the tectonic evolution, deposit characteristics, diagenesis, hydrocarbon formation, abnormal formation pressure, forming of fissure in mudstone reservoir, etc. on the basis of core analysis, physical simulation, numerical simulation, integrated study of well logging and geophysical data, and systematically analyzed the developing and distributing of mudstone fissure reservoir and set up a geological model for the formation of mudstone fissure reservoir, and predicted possible fractural zone in studied area. Mudstone reservoir mainly distributed on the thrown side of sedimentary fault along the sloping area of the petroleum generatiion depression in Zhanhua depression. Growing fault controlled subsidence and sedimentation. Both the rate of subsidence and thickness of mudstone are great on the thrown side of growing fault, which result in the formation of surpressure in the area. The unlocking of fault which leads to the pressure discharges and the upward conduct of below stratum, also makes for the surpressure in mudstone. In Zhanhua depression, mudstone reservior mainly developed in sub-compacted stratum in the third segment of Shahejie formation, which is the best oil source rock because of its wide spread in distribution, great in thickness, and rich in organic matter, and rock types of which are oil source mudstone and shale of deep water or semi-deep water sediment in lacustrine facies. It revealed from core analysis that the stratum is rich in limestone, and consists of lamina of dark mudstone and that of light grey limestone alternately, such rock assemblage is in favor of high pressure and fracture in the process of hydrocarbon generation. Fracture of mudstone in the third segment of Shahejie formation was divided into structure fracture, hydrocarbon generation fracture and compound fracture and six secondary types of fracture for the fist time according to the cause of their formation in the thesis. Structural fracture is formed by tectonic movement such as fold or fault, which develops mainly near the faults, especially in the protrude area and the edge of faults, such fracture has obvious directivity, and tend to have more width and extension in length and obvious direction, and was developed periodically, discontinuously in time and successively as the result of multi-tectonic movement in studied area. Hydrocarbon generation fracture was formed in the process of hydrocarbon generation, the fracture is numerous in number and extensively in distribution, but the scale of it is always small and belongs to microfracture. The compound fracture is the result of both tectonic movement and hydrocarbon forming process. The combination of above fractures in time and space forms the three dimension reservoir space network of mudstone, which satellites with abnormal pressure zone in plane distribution and relates to sedimentary faces, rock combination, organic content, structural evolution, and high pressure, etc.. In Zhanhua depression, the mudstone of third segment in shahejie formation corresponds with a set of seismic reflection with better continuous. When mudstone containing oil and gas of abnormal high pressure, the seismic waveform would change as a result of absorb of oil and gas to the high-frequency composition of seismic reflection, and decrease of seismic reflection frequency resulted from the breakage of mudstone structure. The author solved the problem of mudstone reservoir predicting to some degree through the use of coherent data analysis in Zhanhua depression. Numerical modeling of basin has been used to simulate the ancient liquid pressure field in Zhanhua depression, to quantitative analysis the main controlling factor (such as uncompaction, tectonic movement, hydrocarbon generation) to surpressure in mudstone. Combined with factual geologic information and references, we analyzed the characteristic of basin evolution and factors influence the pressure field, and employed numerical modeling of liquid pressure evolution in 1-D and 2-D section, modeled and analyzed the forming and evolution of pressure in plane for main position in different periods, and made a conclusion that the main factors for surpressure in studied area are tectonic movement, uncompaction and hydrocarbon generation process. In Zhanhua depression, the valid fracture zone in mudstone was mainly formed in the last stage of Dongying movement, the mudstone in the third segment of Shahejie formation turn into fastigium for oil generation and migration in Guantao stage, and oil and gas were preserved since the end of the stage. Tectonic movement was weak after oil and gas to be preserved, and such made for the preserve of oil and gas. The forming of fractured mudstone reservoir can be divided into four different stages, i.e. deposition of muddy oil source rock, draining off water by compacting to producing hydrocarbon, forming of valid fracture and collecting of oil, forming of fracture reservoir. Combined with other regional geologic information, we predicted four prior mudstone fracture reservoirs, which measured 18km2 in area and 1200 X 104t in geological reserves.
Resumo:
In the increasingly enlarged exploration target, deep target layer(especially for the reservoir of lava) is a potential exploration area. As well known, the reflective energy becomes weak because the seismic signals of reflection in deep layer are absorbed and attenuate by upper layer. Caustics and multi-values traveltime in wavefield are aroused by the complexity of stratum. The ratio of signal to noise is not high and the fold numbers are finite(no more than 30). All the factors above affect the validity of conventional processing methods. So the high S/N section of stack can't always be got with the conventional stack methods even if the prestack depth migration is used. So it is inevitable to develop another kind of stack method instead. In the last a few years, the differential solution of wave equation was hold up by the condition of computation. Kirchhoff integral method rose in the initial stages of the ninetieth decade of last century. But there exist severe problems in it, which is are too difficult to resolve, so new method of stack is required for the oil and gas exploration. It is natural to think about upgrading the traditionally physic base of seismic exploration methods and improving those widely used techniques of stack. On the other hand, great progress is depended on the improvement in the wave differential equation prestack depth migration. The algorithm of wavefield continuation in it is utilized. In combination with the wavefield extrapolation and the Fresnel zone stack, new stack method is carried out It is well known that the seismic wavefield observed on surface comes from Fresnel zone physically, and doesn't comes from the same reflection points only. As to the more complex reflection in deep layer, it is difficult to describe the relationship between the reflective interface and the travel time. Extrapolation is used to eliminate caustic and simplify the expression of travel time. So the image quality is enhanced by Fresnel zone stack in target. Based on wave equation, high-frequency ray solution and its character are given to clarify theoretical foundation of the method. The hyperbolic and parabolic travel time of the reflection in layer media are presented in expression of matrix with paraxial ray theory. Because the reflective wave field mainly comes from the Fresnel Zone, thereby the conception of Fresnel Zone is explained. The matrix expression of Fresnel zone and projected Fresnel zone are given in sequence. With geometrical optics, the relationship between object point in model and image point in image space is built for the complex subsurface. The travel time formula of reflective point in the nonuniform media is deduced. Also the formula of reflective segment of zero-offset and nonzero offset section is provided. For convenient application, the interface model of subsurface and curve surface derived from conventional stacks DMO stack and prestack depth migration are analyzed, and the problem of these methods was pointed out in aspects of using data. Arc was put forward to describe the subsurface, thereby the amount of data to stack enlarged in Fresnel Zone. Based on the formula of hyperbolic travel time, the steps of implementation and the flow of Fresnel Zone stack were provided. The computation of three model data shows that the method of Fresnel Zone stack can enhance the signal energy and the ratio of signal to noise effectively. Practical data in Xui Jia Wei Zhi, a area in Daqing oilfield, was processed with this method. The processing results showed that the ability in increasing S/N ratio and enhancing the continuity of weak events as well as confirming the deep configuration of volcanic reservoir is better than others. In deeper target layer, there exists caustic caused by the complex media overburden and the great variation of velocity. Travel time of reflection can't be exactly described by the formula of travel time. Extrapolation is bring forward to resolve the questions above. With the combination of the phase operator and differential operator, extrapolating operator adaptable to the variation of lateral velocity is provided. With this method, seismic records were extrapolated from surface to any different deptlis below. Wave aberration and caustic caused by the inhomogenous layer overburden were eliminated and multi-value curve was transformed into the curve.of single value. The computation of Marmousi shows that it is feasible. Wave field continuation extends the Fresnel Zone stack's application.
Resumo:
With the development of petroleum exploration, subtle reservoir has become the main exploration object in Dongying Depression, which requires some new technologies and methods to further reveal the geological characteristics in step with the mature exploration stage. In this paper, on the references to the studies of petroleum system and multiple oil-gas accumulation belt with flexible maneuverability, and the application of systematic theory, the concept of reservoir assemblage is initially defined as "the association of active source rock(s) and hydrocarbon reservoir(s) that are genetically related, with the bridge of pathway system in an oil and gas bearing basin". Compared with the theories of petroleum system and multiple oil-gas accumulation belts, it emphasizes on the processes of petroleum migration and accumulation and the correlation among active source rock, trapped hydrocarbon and migration pathway, and has been confirmed to be more suitably applied to high maturely explored basin. In the first study of this paper, sequence stratigraphy and subtle analytical technology of source rock have been employed to find that two categories of source rock with their characteristic types of organic matter and substantial states occurred in Dongying Depression. The first category, consisting of the oil shales within the third-order sequences of lacustrine expanding system tracts in the upper interval of the fourth Member of Shahejie Formation and both in the middle and lower intervals of the third Member of Shahejie Formation, is featured with the highest abundance of total organic matter (TOC) and the strongest abilities of hydrocarbon generation and expulsion, which is classified into the standard of good hydrocarbon source rock. Exploration assessment confirmed that about 70-80% of hydrocarbon in Dongying Depression came from this set of source rock for which the low sedimentary rate and strong oxygen-free environment would play the key role during its generation. The second category, composed of organic matter of dark mudstone in high stand system tracts in the upper and middle intervals of the third Member of Shahejie Formation, has been characterized by low content of total organic matter which mostly dispersedly distributes, and formed in the pre-delta to delta front environments. In classification, it belongs to the ordinary standard of source rocks. In the second research part, through the studies of high frequency sequence stratigraphy, fault geometry and active history combining with geochemistry of fluid inclusion and nitrogen compound and simulation test of hydrocarbon migration and accumulation, the faults have been thought to be the principal conduits, and the sandy bodies and unconformities might played the complementary pathways for hydrocarbon migration and accumulation in Dongying Depression of the continental faulted basin. Therefore, the fault activities may mainly constrain on the development of hydrocarbon pathways in space and time. Even more, using homogenization temperatures of fluid inclusion in digenetic minerals, three critical moments for hydrocarbon accumulation have been determined as well in Dongying Depression, which happened during the late stage of Dongying Formation (Ed), the early stage of Guantao Formation (Nig) and the early stage of Minghuazhen Formation (Nim), respectively. Comparatively, the last stage is looked as the main forming-reservoir period, which has also been supported by the results of geochemical analysis and simulation experiments of hydrocarbon generation and expulsion. Clearly, the times of hydrocarbon migration and accumulation are consistent with those of the fault activities in Dongying Depression, which indicate that tectonic activities would control the forming-reservoir. A conceptual model of faulting-episodic expulsion coupled with episodic forming-reservoir has then been established in this study. In the third part of this paper, some focusing areas were selected for the fine descriptions of pathway distribution and forming-reservoir, which has given four types of reservoir assemblage in terms of the main pathway and its correlation with the reservoir and trap: (1) mainly consisted of sandy bodies; (2) mainly consisted of faults; (3) mainly consisted of unconformities; and (4) their complex with two or three types of pathways. This classified criteria has also been applied to access the risk of some prospected traps in Dongying Depression. Finally, through the application of reservoir assemblage integrated with pathway distribution to all the prospective targets in Dongying Depression, the new favorably hydrocarbon accumulated belts have been figured out, and more subtle reservoirs have also been found. For examples, during 2000 and 2002, in the mature exploration areas, such as Liangjialou and Shengtuo structural closures etc., newly proved reserves were 2274 * 104t, and forecasted oil reserves 5660-5860xl04t; and in the predicted favorable areas, newly additional controlled oil reserves was 3355xl04t. Besides those, many other favorable exploration areas need to be further appraised.
Resumo:
Using the approximate high-frequency asymptotic methods to solve the scalar wave equation, we can get the eikonal equation and transport equation. Solving the eikonal equation by the method of characteristics provides a mathematical derivation of ray tracing equations. So, the ray tracing system is folly based on the approximate high-frequency asymptotic methods. If the eikonal is complex, more strictly, the eikonal is real value at the rays and complex outside rays, we can derive the Gaussian beam. This article mainly concentrates on the theory of Gaussian beam. To classical ray tracing theory, the Gaussina beam method (GBM) has many advantages. First, rays are no longer required to stop at the exact position of the receivers; thus time-consuming two-point ray tracing can be avoided. Second, the GBM yields stable results in regions of the wavefield where the standard ray theory fails (e.g., caustics, shadows zones and critical distance). Third, unlike seismograms computed by conventional ray tracing techniques, the GBM synthetic data are less influenced by minor details in the model representation. Here, I realize kinematical and dynamical system, and based on this, realize the GBM. Also, I give some mathematical examples. From these examples, we can find the importance and feasibility of the ray tracing system. Besides, I've studied about the reflection coefficient of inhomogeneous S-electromagnetic wave at the interface of conductive media. Basing on the difference of directions of phase shift constant and attenuation constant when the electromagnetic wave propagates in conductive medium, and using the boundary conditions of electromagnetic wave at the interface of conductive media, we derive the reflection coefficient of inhomogeneous S-electromagnetic wave, and draw the curves of it. The curves show that the quasi total reflection will occur when the electromagnetic wave incident from the medium with greater conductivity to the medium with smaller conductivity. There are two peak, values at the points of the critical angles of phase shift constant and attenuation constant, and the reflection coefficient is smaller than 1. This conclusion is different from that of total reflection light obviously.
Resumo:
In this study, 260 mollusk fossil samples from a Red Clay sequence at Xifeng, Gansu province, in the northern China were analyzed quantitatively. 12 fossil species and four fossil zones have been identified. Three main ecological groups were determined based on ecological requirement of each mollusk taxon. According to fossil composition and succession of three ecological groups, the author discussed the origin and sedimentary environment of the red clay deposits, and the process of ecological environmental changes as well as the variations of the East Asia monsoons during 6.2-2.4 Ma in the Loess Plateau. A preliminary study on periodicity of paleoclimatic changes was also conducted by using spectral analysis method. The main results and conclusions are presented as follows:A continuous land mollusk fossil sequence of 6.2-2.4 Ma from Xifeng Red Clay Formation has been established, which provided a basic data for studying the environmental changes during late Miocene to Pliocene.The study of composition and preservation condition of mollusk fossils reveals a terrestrial in situ ecological population in the Red Clay Formation. All of identifiable mollusk species are composed of terrestrial taxa, which support the view that the Red Clay is an eolian origin, similar to the overlying Quaternary loess deposits.The mollusk record reveals the processes of ecological and environmental changes during 6.2-2.4 Ma in the Loess Plateau. Climatic changes experienced cold and dry from 6.2-5.4 Ma, warm and wet during 5.4-4.5 Ma, mild and moderate from 4.5-3-4 Ma, to rapid cooling and drying after 3.4 Ma. From '5.4- 2.4 Ma, climate was stepwise cooling. The cooling trend is in good agreement with a general1 0global cooling trend during this period, as documented by marine 5 0 records.4. Three remarked ecological shifts took place in mollusk assemblages from 6.2-2.4 Ma, focused on about 5.4, 4.5 and 3.4 Ma. The warming shift around 5.4 Ma was probably related to the rising of the global temperature. The cooling shifts around 4,5 and 3.4 Ma however might be closely linked to the uplift of Tibet Plateau and the development of Northern Hemisphere ice sheet.The succession in mollusk ecological groups also recorded the variability of the East Asian winter and summer monsoon. The winter monsoon dominated two periods from 6.2-5.4 Ma and from 3.4-2.4 Ma, while the summer monsoon was strong during 5.4-4.5 Ma. The variations in winter and summer monsoons were in phase during 4.5-3.4 Ma. Monsoon regimes changed with the duration about 1 Ma, which roughly corresponds to the cycle driven by tectonic activity on the time scales of ICP-IO7 years. In addition, mollusk fossils recorded the large amplitude and high frequency fluctuations overlapped on 105-107 years climate cycle.The maximum entropy spectral analysis and filter-band analysis of total mollusk individuals and three typical ecological groups suggest that the climate changes controlled mainly by solar insolation had periods about 70 ka and 40 ka on the time scales of 105 during late Miocene-Pliocene. Climatic periodicity intensified from 4.0 Ma, which reflected strengthened forcing by high latitude ice volume.
Resumo:
With the development of oil and gas exploration, the exploration of the continental oil and gas turns into the exploration of the subtle oil and gas reservoirs from the structural oil and gas reservoirs in China. The reserves of the found subtle oil and gas reservoirs account for more than 60 percent of the in the discovered oil and gas reserves. Exploration of the subtle oil and gas reservoirs is becoming more and more important and can be taken as the main orientation for the increase of the oil and gas reserves. The characteristics of the continental sedimentary facies determine the complexities of the lithological exploration. Most of the continental rift basins in East China have entered exploration stages of medium and high maturity. Although the quality of the seismic data is relatively good, this areas have the characteristics of the thin sand thickness, small faults, small range of the stratum. It requests that the seismic data have high resolution. It is a important task how to improve the signal/noise ratio of the high frequency of seismic data. In West China, there are the complex landforms, the deep embedding the targets of the prospecting, the complex geological constructs, many ruptures, small range of the traps, the low rock properties, many high pressure stratums and difficulties of boring well. Those represent low signal/noise ratio and complex kinds of noise in the seismic records. This needs to develop the method and technique of the noise attenuation in the data acquisition and processing. So that, oil and gas explorations need the high resolution technique of the geophysics in order to solve the implementation of the oil resources strategy for keep oil production and reserves stable in Ease China and developing the crude production and reserves in West China. High signal/noise ratio of seismic data is the basis. It is impossible to realize for the high resolution and high fidelity without the high signal/noise ratio. We play emphasis on many researches based on the structure analysis for improving signal/noise ratio of the complex areas. Several methods are put forward for noise attenuation to truly reflect the geological features. Those can reflect the geological structures, keep the edges of geological construction and improve the identifications of the oil and gas traps. The ideas of emphasize the foundation, give prominence to innovate, and pay attention to application runs through the paper. The dip-scanning method as the center of the scanned point inevitably blurs the edges of geological features, such as fault and fractures. We develop the new dip scanning method in the shap of end with two sides scanning to solve this problem. We bring forward the methods of signal estimation with the coherence, seismic wave characteristc with coherence, the most homogeneous dip-sanning for the noise attenuation using the new dip-scanning method. They can keep the geological characters, suppress the random noise and improve the s/n ratio and resolution. The rutine dip-scanning is in the time-space domain. Anew method of dip-scanning in the frequency-wavenumber domain for the noise attenuation is put forward. It use the quality of distinguishing between different dip events of the reflection in f-k domain. It can reduce the noise and gain the dip information. We describe a methodology for studying and developing filtering methods based on differential equations. It transforms the filtering equations in the frequency domain or the f-k domain into time or time-space domains, and uses a finite-difference algorithm to solve these equations. This method does not require that seismic data be stationary, so their parameters can vary at every temporal and spatial point. That enhances the adaptability of the filter. It is computationally efficient. We put forward a method of matching pursuits for the noise suppression. This method decomposes any signal into a linear expansion of waveforms that are selected from a redundant dictionary of functions. These waveforms are chosen in order to best match the signal structures. It can extract the effective signal from the noisy signal and reduce the noise. We introduce the beamforming filtering method for the noise elimination. Real seismic data processing shows that it is effective in attenuating multiples and internal multiples. The s/n ratio and resolution are improved. The effective signals have the high fidelity. Through calculating in the theoretic model and applying it to the real seismic data processing, it is proved that the methods in this paper can effectively suppress the random noise, eliminate the cohence noise, and improve the resolution of the seismic data. Their practicability is very better. And the effect is very obvious.
Resumo:
As one part of national road No. 318, Sichuan-Tibet (Chengdu-Lasha) Highway is one of traffic life lines connecting Tibet municipality to the inland, which is very important to the economic development of Tibet. In addition, it is still an important national defence routeway, with extremely important strategic position on maintaining the stability and solidarity of Tibet municipality and consolidating national defence. Particular geological condition, terrain and landform condition and hydrometeorological condition induce large-scale debris flows and landslides (including landslips) and the like geological hazards frequently occur along the highway. High frequency geological hazards not only result in high casualties and a great property loss, but also block traffic at every turn, obstructing the Sichuan-Tibet highway seriously. On the basis of considerable engineering geological investigation and analysis to the relative studying achievements of predecessors, it is found that one of the dominating reason incurring landslides or debris flows again and again in a place is that abundant loose materials are accumulated in valleys and slopes along the highway. Taking landslides' and debris flows along Ranwu-Lulang section of Sichuan-Tibet highway as studying objects, the sources and cause of formation of loose accumulation materials in the studying area are analyzed in detail, the major hazard-inducing conditions, hazard, dynamic risk, prediction of susceptibility degree of landslides and debris flows, and the relations between landslides and debris flows and various hazard-inducing conditions are systematically researched in this paper. All of these will provide scientific foundation for the future highway renovating and reducing and preventing geological hazards. For the purpose of quantitatively analyzing landslide and debris flow hazards, the conception of entropy and information entropy are extended, the conception of geological hazard entropy is brought forward, and relevant mathematics model is built. Additionally, a new approach for the dynamic risk analysis of landslide and debris flow is put forward based on the dynamic characteristics of the hazard of hazard-inducings and the vulnerability of hazard-bearings. The formation of landslide and debris flow is a non-linear process, which is synthetically affected by various factors, and whose formation mechanics is extremely complex. Aiming at this question, a muli-factors classifying and overlapping technique is brought forward on the basis of engineering geomechanics meta-synthesis (EGMS) thought and approach, and relevant mathematics model is also built to predict the susceptibility degree of landslide or debris flow. The example analysis result proves the validity of this thought and approach. To studying the problem that whether the formation and space distribution of landslides and debris flows are controlled by one or several hazard-inducing conditions, the theme graphics of landslides and debris flows hazard and various hazard-inducing conditions are overlapped to determine the relationship between hazard and hazard-inducing conditions. On this basis, the semi-quantitative engineering zonation of the studying area is carried out. In addition, the overlapping analysis method of the hazard-indue ing conditions of landslides and debris flows based on "digital graphics system" is advanced to orderly organize and effectively manage the spatial and attributive data of hazard and hazard-inducing conditions theme graphics, and to realize the effectively combination of graphics, images and figures.
Resumo:
Unlike alphabetic languages, Chinese language is ideographical writing system. Each Chinese character is single-syllable and usually has a direct meaning. So Chinese characters are a kind of valuable experimental material used for research on reading and comparisons of the reading mechanism of different language. In this paper, the normal persons and the patients with semantic dementia were respectively scheduled for two parts of experimental studies on the orthographic, phonologic, semantic and frequency effects of reading of Chinese characters. The Stroop-like character-picture interference experimental paradigm was used to investigate the orthographic, phonologic, semantic and frequency effects of Chinese characters on picture naming when they were presented with pictures to normal persons. The results indicated that the orthographic facilitation effect, phonologic facilitation effect, and semantic interference effect occurred at different SOA values. The orthographic and phonologic facilitation effects were independent. It was for the first time shown that the interaction between orthographic variable and semantic variable occurred when the high-frequency Chinese characters were read. Phonologic representation was activated quicker than semantic representation, by comparison of their SOA. Generally, it means that there is reading without meaning in Chinese character among the normal persons. The orthographic, phonologic, semantic, frequency and concrete effects of Chinese characters were further investigated among the dementia patients with DAT(dementia of Alzheimer's type disease) or CVA or both. They all have an impaired semantic memory. The results showed that patients with dementia could read the names of the pictures aloud while they could not name them or match them with a right character correctly. This is reading impairment without meaning in Chinese among the dementia patients. Meanwhile, they had a selective reading impairment and more LARC(a legitimate alternative reading of components) mistakes especially when reading low-frequency irregular, low-frequency inconsistent and abstract Chinese characters. With the patients' semantic impairment developed, their ability to read the pictures names would remain whereas their ability to read low-frequency irregular and low-frequency inconsistency Chinese characters was reduced. These results indicated that low-frequency irregular Chinese characters can be read correctly only when it is supported by their semantic information. Based on the above results of reading without meaning and of reading of low-frequency irregular Chinese characters supported by their semantic information, it is reasonable to suggest that at least two routes are involved in the process of reading Chinese characters. They are direct phonologic route and indirect semantic route; moreover, the two routes are independent.