264 resultados para Femtosecond spectroscopy
Resumo:
We found reversible dark-center diffraction of the transmitted probe beam passing through the chromium film. which is induced by the pump femtosecond laser. The dark-center diffraction of I he transmitted probe beam appears and disappears with and without the pump beam. A view of diffractive optics with binary phase plate is put forward, which explains the reversible dark-center diffractive optical phenomenon. The pre-ablated hole on the metal film can be regarded as a uniform light filed without phase modulation, the Surrounding Circular part around the pre-ablated hole can be regarded as "phase modulated". Therefore, this diffraction optic view might be helpful for us to understand the phase change of the metal film introduced by the femtosecond laser pulse. (C) 2008 Elsevier B.V, All rights reserved.
Resumo:
The Talbot effect of a high-density grating under femtosecond laser illumination is analyzed with rigorous electromagnetic theory which is based on the Fourier decomposition and the rigorous coupled-wave analysis (RCWA). Numerical simulations show that the contrast of the Talbot images steadily decreases as the transmitted femtosecond laser pulses propagate forward and with wider spectrum width of the femtosecond laser pulses. The Talbot images of high-density gratings have much higher sensitivity of the spectrum widths of the incident laser pulses than those of the traditional low-density gratings. In experiments, the spectrums and the pulse widths of the incident pulses are measured with a frequency-resolved optical grating (FROG) apparatus. The Talbot images are detected by using a Talbot scanning near-field optical microscopy (Talbot-SNOM) technique, which are in coincidence with the numerical simulations. This effect should be useful for developing new femtosecond laser techniques and devices. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We report a novel technique for spectral shaping of femtosecond pulses employing a prism-waveguide coupler (PWC). It is demonstrated that the PWC is capable of producing a frequency-dependent loss with greater attenuation at the peak of the spectrum profile of femtosecond pulses than in the wings, which is especially useful for compensation for gain narrowing in most chirped-pulse amplification laser systems.
Resumo:
Quadratic optical nonlinearity chi((2)) can be exploited in femtosecond lasers and regarded as a significant new degree of freedom for the design of short-pulse sources. We will review our recent progress on developing nonlinear quadratic technologies for femtosecond lasers. Our nonlinear laser technology offers new properties for femtosecond lasers, including optical parametric amplifier with novel working regime, efficient second harmonic generation, and time telescope.
Resumo:
Crystallization is achieved in amorphous Ge2Sb2Te5 films upon irradiation with a single femtosecond laser pulse. Transmission electron microscopy images evidence the morphology of the crystallized spot which depends on the fluence of the ferntosecond laser pulse. Fine crystalline grains are induced at low fluence, and the coarse crystalline grains are obtained at high fluence. At the damage fluence, ablation of the films occurs. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The single-layer and multilayer Sb-rich AgInSbTe films were irradiated by a single femtosecond laser pulse with the duration of 120 fs. The morphological feature resulting from the laser irradiation have been investigated by scanning electron microscopy and atom force microscopy. For the single-layer film, the center of the irradiated spot is a dark depression and the border is a bright protrusion; however, for the multilayer film, the center morphology changes from a depression to a protrusion as the energy increases. The crystallization threshold fluence of the single-layer and the multilayer films is 46.36 mJ/cm(2), 63.74 mJ/cm(2), respectively.
Resumo:
Crystallization in amorphous Ge2Sb2Te5 films by irradiation with femtosecond laser was investigated. The reflectivity and X-ray diffraction measurements confirmed that the crystalline state has been achieved in amorphous Ge2Sb2Te5 films under the irradiation of fermosecond laser with an average power of 65 mW at a frequency of 1000 Hz and a pulsed width of 120 fs. The surface morphology before and after femtosecond laser irradiation was studied by scanning electron microscope; results showed that the surface of films with irradiation of femtosecond laser was composed of some the crystallized micro-region. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
The morphology of materials resulting from laser irradiation of the single-layer and the multilayer amorphous Ge2Sb2Te5 films using 120 fs pulses at 800 nm was observed using scanning electron microscopy and atomic force microscopy. For the single-layer film, the center of the irradiated spot is depression and the border is protrusion, however, for the multilayer film, the center morphology changes from a depression to a protrusion as the increase of the energy. The crystallization threshold fluence of the single-layer and the multilayer film is 22 and 23 mJ/cm(2), respectively. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The results of the femtosecond optical heterodyne detection of optical Kerr effect at 805 nm with the 80 fs ultrafast pulses in amorphous Ge10As40S30Se20 film is reported in this paper. The film shows an optical non-linear response of: 200 fs under ultrafast 80 fs-pulse excitation and the values of real and imaginary parts of non-linear susceptibility chi((3)) were 9.0 X 10(-12) and -4.0 X 10(-12) esu, respectively. The large third-order non-linearity and ultrafast response are attributed to the ultrafast distortion of the electron orbits surrounding the average positions of the nucleus of Ge, As, S and Se atoms. This Ge10As40S30Se20 chalcogenide glass would be expected as a promising material for optical switching technique. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The femtosecond pump-probe technique was used to study the carrier dynamics of amorphous Ge2Sb2Te5 films. With carrier density at around 10(20)-10(21) cm(-3), carriers were excited within 1 ps and recovered to the initial state for less than 3 ns. On the picosecond time scale, the carrier relaxation consists of two components: a fast process within 5 ps and a slow process after 5 ps. The relaxation time of the fast component is a function of carrier density, which increases from 1.9 to 4.3 ps for the carrier density changing from 9.7x10(20) cm(-3) to 3.1x10(21) cm(-3). A possible interpretation of the relaxation processes is elucidated. In the first 5 ps the relaxation process is dominated by an intraband carrier relaxation and the carrier trapping. It is followed by a recombination process of trapped carriers at later delay time. (c) 2007 American Institute of Physics.
Resumo:
We report the self-formation of quasiperiodic void structure with the length of several hundred micrometers inside the CaF2 crystal. The quasiperiodical voids along the propagation direction of the laser beam were formed spontaneously after the irradiation of a single femtosecond laser beam which was focused at a fixed point inside the crystal sample. The length of the void array varied with the focal depth beneath the sample surface. The possible mechanism of the self-formed void structure was discussed. (c) 2007 American Institute of Physics.
Resumo:
We report on space-selective co-precipitation of silver and gold nanoparticles in Ag+, Au3+ co-doped silicate glasses by irradiation of femtosecond laser pulses and subsequent annealing at high temperatures. The color of the irradiated area in the glass sample changed from yellow to red with the increase of the annealing temperature. The effects of average laser power and annealing temperature on precipitation of the nanoparticles were investigated. A reasonable mechanism was proposed to explain the observed phenomena. (c) 2006 Elsevier Ltd. All rights reserved.