141 resultados para EXCESS LOSS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new class of soluble six-membered ring polynaphthalimides (PNIs) was synthesized from asymmetrical fluorinated naphthalenesubstituted monomers. All the resulting PNIs were easily soluble in many organic solvents, such as N-methyl-2-pyrrolidinone (NMP), N,N-dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO). and chloroform. They also showed good thermal stability with glass transition temperature of 340-386 degrees C, 10% weight loss temperature in excess of 529 degrees C. Polyimide 3c could be solution-cast into tough and flexible film. The film had a tensile strength, elongation at break, and Young's modulus of about 117.6 Wa, 23.6%, and 1.77 GPa, respectively. The gas permeation property of the film of 3c was investigated with oxygen permeability coefficient (PO2 = 3.99) and permeability selectivity coefficient of oxygen to nitrogen (P-O2/P-N2 = 5.27). Therefore, these materials are expected to be a good alternative to PIs based on five-membered rings with applications in gas separation membranes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Excess intercalation of cationic surfactants into Na-montmorillonites (MMTs) was investigated in organically modified silicates (OMSs), synthesized with MMTs and octadecylammonium chloride (OAC) by systematically varying the surfactant loading level from 0.625 to 1, 1.25, 1.56, 2, and 2.5 with respect to the cation exchange capacity (CEC) of MMTs. Wide-angle X-ray diffraction and thermogravimetric analysis results indicated that the continuous increase of interlayer distances came from the entering of surfactants into the interlayer of MMTs. Excess surfactants were extracted with a Soxhlet apparatus, which showed two kinds of intercalation states of surfactants in the interlayer when the surfactant loading level was beyond the CEC. Fourier transform infrared spectroscopy and differential scanning calorimetry were used to explore the microstructures of OMSs. It was found that the surfactants arranged more orderly as the loading level increased and the excess surfactants piled up in the interlayer together with counterions, forming a sandwiched surfactant layer. On the basis of the results, the layer structures of OMSs and the mechanism by which the surfactants entered the interlayer were expounded: surfactant cations entered the interlayer through cation exchange reactions and were tightly attracted to the silicate platelet surfaces when the surfactant loading level was below the CEC;

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The irreversible capacity loss of the carbon electrode in lithium-ion batteries at the first cycle is caused mostly by surface film growth. We inspected an unknown irreversible capacity loss (UICL) of the natural graphite electrodes. The charge/discharge behavior of graphite and meso-phase carbon microbeads heat-treated at 2800 degrees C (MCMB28) as the materials of the carbon anode in the lithium-ion battery were compared. It was found that the capacity loss of the natural graphite electrode in the first cycle is caused not only by surface film growth, but also by irreversible lithium-ion intercalation on the new formed surface at the potential range of lithium intercalation, while the capacity loss of the MCMB28 electrode is mainly originated from surface film growth. The reason for the difference of their irreversible capacity losses of these two kinds of carbon material was explained in relation to their structural characteristics. (C) 1997 Published by Elsevier Science S.A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The radiation-induced loss of weight of F-46 was found to be proportional to irradiation dose and affected markedly by irradiation temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coral bleaching, which is defined as the loss of colour in corals due to the loss of their symbiotic algae (commonly called zooxanthellae) or pigments or both, is occurring globally at increasing rates, and its harm becomes more and more serious during these two decades. The significance of these bleaching events to the health of coral reef ecosystems is extreme, as bleached corals exhibited high mortality, reduced fecundity and productivity and increased susceptibility to diseases. This decreased coral fitness is easily to lead to reef degradation and ultimately to the breakdown of the coral reef ecosystems. Recently, the reasons leading to coral bleaching are thought to be as follows: too high or too low temperature, excess ultraviolet exposure, heavy metal pollution, cyanide poison and seasonal cycle. To date there has been little knowledge of whether mariculture can result in coral bleaching and which substance has the worst effect on corals. And no research was conducted on the effect of hypoxia on corals. To address these questions, effects of temperature, hypoxia, ammonia and nitrate on bleaching of three coral species were studied through examination of morphology and the measurement of the number of symbiotic algae of three coral species Acropora nobilis, Palythoa sp. and Alveopora verrilliana. Results showed that increase in temperature and decrease in dissolved oxygen could lead to increasing number of symbiotic algae and more serious bleaching. In addition, the concentration of 0.001 mmol/L ammonia or nitrate could increase significantly the expulsion of the symbiotic algae of the three coral species. Except for Acropora nobilis, the numbers of symbiotic algae of other two corals did not significantly increase with the increasing concentration of ammonia and nitrate. Furthermore, different hosts have different stress susceptibilities on coral bleaching.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Transglutaminase can catalyze the cross-linking reaction between soluble clotting protein molecules from the plasma for prevention of excess blood loss from a wound and obstructing micro-organisms from invading the wound in crustaceans. A novel transglutaminase (FcTG) gene was cloned from hemocytes of Chinese shrimp Fenneropenaeus chinensis by 3' and 5' rapid amplification of cDNA ends (RACE) PCR. The full-length cDNA consists of 2972 bp, encoding 757 amino acids with a calculated molecular mass of 84.96 kDa and a theoretical isoelectric point of 5.61. FcTG contains a typical transglutaminase-like homologue (TGc domain: E-value = 1.94e-38). Three catalytic sites (Cys-324, His-391 and Asp-414) are present in this domain. The deduced amino acid sequence of FcTG showed high identity with black tiger shrimp TG, kuruma shrimp TG and crayfish TG. Transcripts of FcTG mRNA were mainly detected in gill, lymphoid organ and hemocytes by RT-PCR. RNA in situ hybridization further confirmed that FcTG was constitutively expressed in hemocytes both in the circulatory system and lymphoid organ. The variation of mRNA transcription level in hemocytes and lymphoid organ following injection of killed bacteria or infection with white spot syndrome virus (WSSV) was quantified by RT-PCR. The up-regulated expression of FcTG in shrimp lymphoid organ following injection of bacteria indicates that it is inducible and might be associated with bacterial challenge. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The bay scallop Argopecten irradians is a hermaphroditic bivalve native to the Atlantic coast of the United States that was introduced to China for aquaculture production in 1982. It now supports a major aquaculture industry in China. Introduced species often start with limited genetic variability, which is problematic for the further selective breeding. Bay scallop aquaculture is exclusively hatchery based and as the initial introduction consisted of only 26 scallops, there have been concerns about inbreeding and inbreeding depression in cultured populations in China. In this study, eleven simple sequence repeat (SSR) markers were used to compare genetic variation in cultured populations from China with that in a natural population from the east coast of America. Although the difference in heterozygosity was small, the Chinese populations lost 9 of the 45 alleles (20%) found in the wild population. The reduced allele diversity suggests that the Chinese bay scallop populations experienced a bottleneck in genetic diversity that remains significant despite several recent introductions of new stocks aimed at expanding the gene pool. The loss of allele diversity may affect future efforts in selective breeding and domestication, and results of this study highlight the need for additional introductions, advanced breeding programs that minimize inbreeding and continued genetic monitoring. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on Th-230-U-238 disequilibrium and major element data from mid-ocean ridge basalts (MORBs) and ocean island basalts (OIBs), this study calculates mantle melting parameters, and thereby investigates the origin of Th-230 excess. (Th-230/U-238) in global MORBs shows a positive correlation with Fe-8, P (o), Na-8, and F-melt (Fe-8 and Na-8 are FeO and Na2O contents respectively after correction for crustal fractionation relative to MgO = 8 wt%, P (o)=pressure of initial melting and F (melt)=degree of melt), while Th-230 excess in OIBs has no obvious correlation with either initial mantle melting depth or the average degree of mantle melting. Furthermore, compared with the MORBs, higher (Th-230/U-238) in OIBs actually corresponds to a lower melting degree. This suggests that the Th-230 excess in MORBs is controlled by mantle melting conditions, while the Th-230 excess in OIBs is more likely related to the deep garnet control. The vast majority of calculated initial melting pressures of MORBs with excess Th-230 are between 1.0 and 2.5 GPa, which is consistent with the conclusion from experiments in recent years that D (U)> D (Th) for Al-clinopyroxene at pressures of > 1.0 GPa. The initial melting pressure of OIBs is 2.2-3.5 GPa (around the spinel-garnet transition zone), with their low excess Ra-226 compared to MORBs also suggesting a deeper mantle source. Accordingly, excess Th-230 in MORBs and OIBs may be formed respectively in the spinel and garnet stability field. In addition, there is no obvious correlation of K2O/TiO2 with (Th-230/U-238) and initial melting pressure (P (o)) of MORBs, so it is proposed that the melting depth producing excess Th-230 does not tap the spinel-garnet transition zone. OIBs and MORBs in both (Th-230/U-238) vs. K2O/TiO2 and (Th-230/U-238) vs. P (o) plots fall in two distinct areas, indicating that the mineral phases which dominate their excess Th-230 are different. Ce/Yb-Ce curves of fast and slow ridge MORBs are similar, while, in comparison, the Ce/Yb-Ce curve for OIBs shows more influence from garnet. The mechanisms generating excess Th-230 in MORBs and OIBs are significantly different, with formation of excess Th-230 in the garnet zone only being suitable for OIBs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fractional energy losses of waves due to wave breaking when passing over a submerged bar are studied systematically using a modified numerical code that is based on the high-order Boussinesq-type equations. The model is first tested by the additional experimental data, and the model's capability of simulating the wave transformation over both gentle slope and steep slope is demonstrated. Then, the model's breaking index is replaced and tested. The new breaking index, which is optimized from the several breaking indices, is not sensitive to the spatial grid length and includes the bottom slopes. Numerical tests show that the modified model with the new breaking index is more stable and efficient for the shallow-water wave breaking. Finally, the modified model is used to study the fractional energy losses for the regular waves propagating and breaking over a submerged bar. Our results have revealed that how the nonlinearity and the dispersion of the incident waves as well as the dimensionless bar height (normalized by water depth) dominate the fractional energy losses. It is also found that the bar slope (limited to gentle slopes that less than 1:10) and the dimensionless bar length (normalized by incident wave length) have negligible effects on the fractional energy losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is excess nitrate (NO3) in the Pearl River coastal plume in the southern waters of Hong Kong in summer. We hypothesize that phosphorus (P) limitation controls the utilization of excess NO3 due to the high N:P ratio in the Pearl River. To test this hypothesis, we conducted two 1-day cruises on July 13 and 19, 2000 to examine the response of the phytoplankton to P additions with respect to changes in biomass, uptake of nutrients and nutrient uptake ratios using a batch incubation of natural water samples collected from the Pearl River estuary and adjacent coastal waters. At a station (E1, salinity =5) in the Pearl River estuary, the N/P ratio at the surface was 46:1, (64 muM DIN: 1.3 muM PO4) and decreased to 24:1 (12 muM DIN: 0.5 muM PO4) downstream at a station (Stn 26, salinity =26) in the coastal plume south of Hong Kong. Without a P addition, NO3 in the water samples collected at E1 could not be depleted during a 9 day incubation (similar to20 muM NO3 remaining). With a P addition, NO3 disappeared completely on day 6 with the depletion of the added PO4 (2-3 muM). This was also true for a station, E4 (salinity= 15) further downstream, but within the estuary. At Stn 26, in the coastal plume south of Hong Kong, NO3 (similar to11.5 muM) was eventually depleted without the addition of PO4, but it took 8 days instead of 5 days for Stn E4. The uptake ratio of dissolved inorganic nitrogen (DIN) to PO4, without a P addition was 51:1, 43:1 and 46:1 for Stns E1, E4 and 26, respectively. With a P addition, the DIN/PO4 uptake ratio decreased to 20:1, 14:1 and 12:1, respectively, for the 3 stations. These results clearly indicate potential P limitation to utilization of NO3 in the Pearl River estuary, resulting in excess NO3 in waters of the coastal plume downstream of the estuary, some of which would eventually be transported offshore. High uptake ratios of N:P without a P addition (43N:1P) suggest that phytoplankton have a nitrogen uptake capacity in excess of the Redfield ratio of 16N: 1P by 2.5-3 times. The value of 2.5-3 times was likely a maximum that should have contained a contribution of P released from desorption of P from sediments or from regeneration by zooplankton grazing and bacterial activity during the incubation of natural water samples. Without a P addition, however, phytoplankton biomass did not increase. This means that P turnover rates or regeneration may allow phytoplankton to take up additional N in excess of the Redfield ratio and store it, but without increasing the algal biomass. Therefore, high ambient N:P ratios in excess of the Redfield ratio do indicate potential P limitation to phytoplankton biomass in this estuarine coastal ecosystem. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duplications and rearrangements of coding genes are major themes in the evolution of mitochondrial genomes, bearing important consequences in the function of mitochondria and the fitness of organisms. Yu et al. (BMC Genomics 2008, 9: 477) reported the complete mt genome sequence of the oyster Crassostrea hongkongensis (16,475 bp) and found that a DNA segment containing four tRNA genes (trnK(1), trnC, trnQ(1) and trnN), a duplicated (rrnS) and a split rRNA gene (rrnL5') was absent compared with that of two other Crassostrea species. It was suggested that the absence was a novel case of "tandem duplication-random loss" with evolutionary significance. We independently sequenced the complete mt genome of three C. hongkongensis individuals, all of which were 18,622 bp and contained the segment that was missing in Yu et al.'s sequence. Further, we designed primers, verified sequences and demonstrated that the sequence loss in Yu et al.'s study was an artifact caused by placing primers in a duplicated region. The duplication and split of ribosomal RNA genes are unique for Crassostrea oysters and not lost in C. hongkongensis. Our study highlights the need for caution when amplifying and sequencing through duplicated regions of the genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method for the measurement of the pure mechanical wear loss for 321 stainless steel, 1045 steel and pure iron in the study of the synergy between corrosion and wear was studied, The methods studied included the measurement in distilled water, by cathodic protection and by adding inhibitor KI, and all were compared with the wear loss in air. The experiment showed that the pure mechanical wear losses and friction coefficients obtained by the three methods were close to each other and can be used to calculate the various wear components in the study of the interaction of corrosion and wear, but the measurements in distilled water for pure iron and 1045 steel are not recommended due to their corrosion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbiologically influenced corrosion (MIC) is very severe corrosion for constructions buried under sea mud environment. Therefore it is of great importance to carry out the investigation of the corrosion behavior of marine steel in sea mud. In this paper, the effect of sulfate-reducing bacteria (SRB) on corrosion behavior of mild steel in sea mud was studied by weight loss, dual-compartment cell, electronic probe microanalysis (EPMA), transmission electron microscopy (TEM).combined with energy dispersive X-ray analysis (EDX) and electrochemical impedance spectroscopy (EIS). The results showed that corrosion rate and galvanic current were influenced by the metabolic activity of SRB. In the environment of sea mud containing SRB, the original corrosion products, ferric (oxyhydr) oxide, transformed to iron sulfide. With the excess of the dissolved H2S, the composition of the protective layer formed of FeS transformed to FeS2 or other non-stoichiometric polysulphide, which changed the state of the former layer and accelerated the corrosion process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the independent and combined effects of experimental warming and grazing on plant species diversity on the north-eastern Tibetan Plateau, a region highly vulnerable to ongoing climate and land use changes. Experimental warming caused a 26-36% decrease in species richness, a response that was generally dampened by experimental grazing. Higher species losses occurred at the drier sites where N was less available. Moreover, we observed an indirect effect of climate change on species richness as mediated by plant-plant interactions. Heat stress and warming-induced litter accumulation are potential explanations for the species' responses to experimental warming. This is the first reported experimental evidence that climate warming could cause dramatic declines in plant species diversity in high elevation ecosystems over short time frames and supports model predictions of species losses with anthropogenic climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slide-debris flow is debris flow which is transformed from landslide consecutively in a short time, it comprises of two phases: First, Landslide starts to slide; Second, landslide changes to debris flow. Slide-debris flow which brings great property and life loss happens frequently at home and abroad. In order to forecast the happening possibility and scope of slide-debris flow, transfromation mechanism of Slide-debris flow must be studied. Research on transformation mechanism of slide-debris flow is intersectant science of landslide kinetics and debris flow starting theory, It is a fringe problem as well as front problem of geological hazard. This paper takes Qingning slide-debris flow in Da County, Sichuan Province for example and has studied the mechanism of its instability and transfromation into debris flow through indoor test (including usual soil test and ring shear test) and digital modeling method.The research gets the following conclusions. Qingning Landslide took place mainly because of confined water head arising from rainfall infiltration. Before Landslide occurring, it rained continuously for 22 days, accumulated precipitation arrived at 521.6mm.Investigation shows that strata of Qingning Landslide contains quaternary loose accumulation, slip soil and highly weathered bedrock, which is a good condition for formation of confined water in the slope. Further more, groundwater seepage in the slope body and corresponding slope safety factor before landslide occurring have been computed through finite element method. The result shows that because of infiltration of rainfall, confined water head in the slope arose sharply, accordingly, the safety factor of the slope declined quickly. The result also shows that force put on the slide body by the rock mass detached from Dazhaiyan mountain was the direct factor for landslide occurring. Qingning slide-debris transformation mode has been summarized, the process the landslide changed into debris flow is divided into three phases in the prospective of macroscopic geological condition: landslide occurring, transformation and debris flow. Landslide occurring phase is from slope’ local creeping slide to Landslide occurring; transformation phase contains slide body sliding on the slide bed after slide occurring and sliding on the slope after shearing opening; debris flow phase is that slide body breaks up completely and flows downward into the ditches. The transformation mechanism of Qingning slide-debris flow has been studied through indoor ring shear test of slip soil. The result shows that transformation mechanism contains two points: first, during slide body sliding on the slide bed and slope after shearing opening, shearing shrinkage, grain crushing and grain layering brought about declining of its volume and produced excess pore water pressure, and because producing velocity of excess pore water pressure is much greater than its dissipating velocity, shear strength of slide body decreased sharply because of accumulated pore water pressure. Second, grains crushing and grains layering during slide body sliding brought about thick liquefied layer at the bottom of the slidebody, liquefied layer contained high water content and its shear strength was very low, its thickness increased as the sliding displacement increasing. Liquefied layer makes slide body sliding fast and easily break down to debris flow. Excess pore water pressure and liquefied layer made shear strength of slidebody became very low, furthermore, water in the pit of slope joining in the slidebody was also a facter that made slidebody accelerate the transformation. Influence of slide body thickness and fine grains content to transformation of slide-debris flow has been studied through ring shear test. The result reaches two conclusions. First, thickness of slide body affects transformation of slide-debris flow by two ways, porewater pressure and effect of “soft base” increases as thickness of slide body increasing.so the thicker slide body is ,the easier transformation is. Second, actual dissipating velocity of porewater pressure should be considered when studying the influence of fine grains content to tranformation of slide-debris flow. There should be a critical content of fine grains which makes the difference of producing and dissipating velocity of water pore pressre greatest, this value is the best for slide-debris transformation. The whole process of slide-debris flow transformation is reproduced through discrete element method. Transformation mechanism of slide-debris flow is studied through monitoring various parameters including pore water pressure, grain crushing and grain layering in the slide body during the transformation. The result confirms and supplements the transformation mechanism of slide-debris flow got from ring shear test well.