5 resultados para EXCESS LOSS

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Threefold symmetric Fe phosphine complexes have been used to model the structural and functional aspects of biological N2 fixation by nitrogenases. Low-valent bridging Fe-S-Fe complexes in the formal oxidation states Fe(II)Fe(II), Fe(II)/Fe(I), and Fe(I)/Fe(I) have been synthesized which display rich spectroscopic and magnetic behavior. A series of cationic tris-phosphine borane (TPB) ligated Fe complexes have been synthesized and been shown to bind a variety of nitrogenous ligands including N2H4, NH3, and NH2-. These complexes are all high spin S = 3/2 and display EPR and magnetic characteristics typical of this spin state. Furthermore, a sequential protonation and reduction sequence of a terminal amide results in loss of NH3 and uptake of N2. These stoichiometric transformations represent the final steps in potential N2 fixation schemes.

Treatment of an anionic FeN2 complex with excess acid also results in the formation of some NH3, suggesting the possibility of a catalytic cycle for the conversion of N2 to NH3 mediated by Fe. Indeed, use of excess acid and reductant results in the formation of seven equivalents of NH3 per Fe center, demonstrating Fe mediated catalytic N2 fixation with acids and protons for the first time. Numerous control experiments indicate that this catalysis is likely being mediated by a molecular species.

A number of other phosphine ligated Fe complexes have also been tested for catalysis and suggest that a hemi-labile Fe-B interaction may be critical for catalysis. Additionally, various conditions for the catalysis have been investigated. These studies further support the assignment of a molecular species and delineate some of the conditions required for catalysis.

Finally, combined spectroscopic studies have been performed on a putative intermediate for catalysis. These studies converge on an assignment of this new species as a hydrazido(2-) complex. Such species have been known on group 6 metals for some time, but this represents the first characterization of this ligand on Fe. Further spectroscopic studies suggest that this species is present in catalytic mixtures, which suggests that the first steps of a distal mechanism for N2 fixation are feasible in this system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The technique of variable-angle, electron energy-loss spectroscopy has been used to study the electronic spectroscopy of the diketene molecule. The experiment was performed using incident electron beam energies of 25 eV and 50 eV, and at scattering angles between 10° and 90°. The energy-loss region from 2 eV to 11 eV was examined. One spin-forbidden transition has been observed at 4.36 eV and three others that are spin-allowed have been located at 5.89 eV, 6.88 eV and 7.84 eV. Based on the intensity variation of these transitions with impact energy and scattering angle, and through analogy with simpler molecules, the first three transitions are tentatively assigned to an n → π* transition, a π - σ* (3s) Rydberg transition and a π → π* transition.

Thermal decomposition of chlorodifluoromethane, chloroform, dichloromethane and chloromethane under flash-vacuum pyrolysis conditions (900-1100°C) was investigated by the technique of electron energy-loss spectroscopy, using the impact energy of 50 eV and a scattering angle of 10°. The pyrolytic reaction follows a hydrogen-chloride α-elimination pathway. The difluoromethylene radical was produced from chlorodifluoromethane pyrolysis at 900°C and identified by its X^1 A_1 → A^1B_1 band at 5.04 eV.

Finally, a number of exploratory studies have been performed. The thermal decomposition of diketene was studied under flash vacuum pressures (1-10 mTorr) and temperatures ranging from 500°C to 1000°C. The complete decomposition of the diketene molecule into two ketene molecules was achieved at 900°C. The pyrolysis of trifluoromethyl iodide molecule at 1000°C produced an electron energy-loss spectrum with several iodine-atom, sharp peaks and only a small shoulder at 8.37 eV as a possible trifluoromethyl radical feature. The electron energy-loss spectrum of trichlorobromomethane at 900°C mainly showed features from bromine atom, chlorine molecule and tetrachloroethylene. Hexachloroacetone decomposed partially at 900°C, but showed well-defined features from chlorine, carbon monoxide and tetrachloroethylene molecules. Bromodichloromethane molecule was investigated at 1000°C and produced a congested, electron energy-loss spectrum with bromine-atom, hydrogen-bromide, hydrogen-chloride and tetrachloroethylene features.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental measurements of rate of energy loss were made for protons of energy .5 to 1.6 MeV channeling through 1 μm thick silicon targets along the <110>, <111>, and <211> axial directions, and the {100}, {110}, {111}, and {211} planar directions. A .05% resolution automatically controlled magnetic spectrometer was used. The data are presented graphically along with an extensive summary of data in the literature. The data taken cover a wider range of channels than has previously been examined, and are in agreement with the data of F. Eisen, et al., Radd. Eff. 13, 93 (1972).

The theory in the literature for channeling energy loss due to interaction with local electrons, core electrons, and distant valence electrons of the crystal atoms is summarized. Straggling is analyzed, and a computer program which calculates energy loss and straggling using this theory and the Moliere approximation to the Thomas Fermi potential, VTF, and the detailed silicon crystal structure is described. Values for the local electron density Zloc in each of the channels listed above are extracted from the data by graphical matching of the experimental and computer results.

Zeroth and second order contributions to Zloc as a function of distance from the center of the channel were computed from ∇2VTF = 4πρ for various channels in silicon. For data taken in this work and data of F. Eisen, et al., Rad. Eff. 13, 93 (1972), the calculated zeroth order contribution to Zloc lies between the experimentally extracted Zloc values obtained by using the peak and the leading edge of the transmission spectra, suggesting that the observed straggling is due both to statistical fluctuations and to path variation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermodynamical fluctuations in temperature and position exist in every physical system, and show up as a fundamental noise limit whenever we choose to measure some quantity in a laboratory environment. Thermodynamical fluctuations in the position of the atoms in the dielectric coatings on the mirrors for optical cavities at the forefront of precision metrology (e.g., LIGO, the cavities which probe atomic transitions to define the second) are a current limiting noise source for these experiments, and anything which involves locking a laser to an optical cavity. These thermodynamic noise sources scale physical geometry of experiment, material properties (such as mechanical loss in our dielectric coatings), and temperature. The temperature scaling provides a natural motivation to move to lower temperatures, with a potential huge benefit for redesigning a room temperature experiment which is limited by thermal noise for cryogenic operation.

We design, build, and characterize a pair of linear Fabry-Perot cavities to explore limitations to ultra low noise laser stabilization experiments at cryogenic temperatures. We use silicon as the primary material for the cavity and mirrors, due to a zero crossing in its linear coefficient of thermal expansion (CTE) at 123 K, and other desirable material properties. We use silica tantala coatings, which are currently the best for making high finesse low noise cavities at room temperature. The material properties of these coating materials (which set the thermal noise levels) are relatively unknown at cryogenic temperatures, which motivates us to study them at these temperatures. We were not able to measure any thermal noise source with our experiment due to excess noise. In this work we analyze the design and performance of the cavities, and recommend a design shift from mid length cavities to short cavities in order to facilitate a direct measurement of cryogenic coating noise.

In addition, we measure the cavities (frequency dependent) photo-thermal response. This can help characterize thermooptic noise in the coatings, which is poorly understood at cryogenic temperatures. We also explore the feasibility of using the cavity to do macroscopic quantum optomechanics such as ground state cooling.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The isotopic and elemental abundances of noble gases in the solar system are investigated, using simple mixing models and mass-spectrometric measurements of the noble gases in meteorites and terrestrial rocks and minerals.

Primordial neon is modeled by two isotopically distinct components from the interstellar gas and dust. Neon from the gas dominates solar neon, which contains about ten times more 20Ne than 22Ne. Neon from the dust is represented in meteorites by neon-E, with 20Ne/22Ne less than 0.6. Isotopic variations in meteorites require neon from both dust and gas to be present. Mixing dust and gas without neon loss generates linear correlation lines on three-isotope and composition-concentration diagrams. A model for solar wind implantation predicts small deviations from linear mixing, due to preferential sputtering of the lighter neon isotopes.

Neon in meteorites consists of galactic cosmic ray spallation neon and at least two primordial components, neon-E and neon-S. Neon was measured in several meteorites to investigate these end- members. Cosmogenic neon produced from sodium is found to be strongly enriched in 22Ne. Neon measurements on sodium-rich samples must be interpreted with care so not to confuse this source of 22Ne with neon-E, which is also rich in 22Ne.

Neon data for the carbonaceous chondrite Mokoia show that the end member composition of neon-Si in meteorites is 20Ne/22Ne = 13.7, the same as the present solar wind. The solar wind composition evidently has remained constant since before the compaction of Mokoia.

Ca, Al-rich inclusions from the Allende meteorite were examined for correlation between neon-E and oxygen or magnesium isotopic anomalies. 22Ne and 36Ar enrichments found in some inclusions are attributed to cosmic- ray-induced reactions on Na and Cl, not to a primordial component. Neon-E is not detectably enriched in Allende.

Measurements were made to determine the noble gas contents of various terrestrial rocks and minerals, and to investigate the cycling of noble gases between different terrestrial reservoirs. Beryl crystals contain a characteristic suite of magmatic gases including nucleogenic 21Ne and 22Ne from (α,n) reactions, radiogenic 40Ar, and fissiogenic 131-136Xe from the decay of K and U in the continental crust. Significant concentrations of atmospheric noble gases are also present in beryl.

Both juvenile and atmospheric noble gases are found in rocks from the Skaergaard intrusion. The ratio 40Ar/36Ar (corrected for in situ decay of 40K) correlates with δ18O in plagioclase. Atmospheric argon has been introduced into samples that have experienced oxygen-isotope exchange with circulating meteoric hydrothermal fluids. Unexchanged samples contain juvenile argon with 40Ar/36Ar greater than 6000 that was trapped from the Skaergaard magma.

Juvenile and atmospheric gases have been measured in the glassy rims of mid-ocean ridge (MOR) pillow basalts. Evidence is presented that three samples contain excess radiogenic 129Xe and fission xenon, in addition to the excess radiogenic 40Ar found in all samples. These juvenile gases are being outgassed from the upper-mantle source region of the MOR magma. No isotopic evidence has been found here for juvenile primordial noble gases accompanying the juvenile radiogenic gases in the MOR glasses. Large argon isotopic variations in a single specimen provide a clear indication of the late-stage addition of atmospheric argon, probably from seawater.

The Skaergaard data demonstrate that atmospheric noble gases dissolved in ground water can be transferred into crustal rocks. Subduction of oceanic crust altered by seawater can transport atmospheric noble gases into the upper mantle. A substantial portion of the noble gases in mantle derived rocks may represent subducted gases, not a primordial component as is often assumed.