167 resultados para ESI-MS characterization
Resumo:
Two methods for tetrodotoxin analysis using liquid chromatography coupled with electrospray iontrap mass spectrometry (LC-ESI-MS) have been established with C,, reversed phase column and hydrophilic interaction liquid chromatography (HILIC) column, respectively. Sensitivity and reproducibility of the methods were compared. The method using C-18 column in selected ion monitoring (SIM) mode had a detection limit (S/N = 3) of 120 pg, and a good linearity of the calibration curve was obtained for tetrodotoxin (r = 0. 9992). High reproducibility of the method was observed, with a relative standard deviation (RSD) below 10%. The method using HILIC column in SIM mode and selected reaction monitoring (SRM) mode had detection limits (S/N = 3) of 15 and 3.75 pg, respectively. Good linearity of the calibration curves was obtained for tetrodotoxin (r = 0. 9996 and 0. 9998 in SIM and SRM mode, respectively). T he reproducibility was high in SIM mode but relatively poor in SRM mode. Based on the results, the method using HILIC column in SIM mode was suggested for the analysis of tetrodotoxin with LC-MS system.
Resumo:
Supercritical fluid extraction (SFE) was used to extract homoisoflavonoids from Ophiopogon japonicus (Thunb.) Ker-Gawler. The optimization of parameters was carried out using an orthogonal test L-9 (3)(4) including pressure, temperature, dynamic extraction time and the amount of modifier. The process was then scaled up by 100 times with a preparative SFE system under the optimized conditions of 25 MPa, 55 degrees C, 4.0 h and 25% methanol as a modifier. Then crude extracts were separated and purified by high-speed counter-current chromatography (HSCCC) with a two-phase solvent system composed of n-hexane/ethyl acetate/methanol/ACN/water (1.8:1.0:1.0:1.2:1.0 v/v). There three homoisoflavonoidal compounds including methylophiopogonanone A 6-aldehydo-isoophiopogonone A, and 6-formyl-isoophiopogonanone A, were successfully isolated and purified in one step. The collected fractions were analyzed by HPLC. In each operation, 140 mg crude extracts was separated and yielded 15.3 mg of methylophiopogonanone A (96.9% purity), 4.1 mg of 6-aldehydo-isoophiopogonone A (98.3% purity) and 13.5 mg of 6-formyl-isoophiopogonanone A (97.3% purity) respectively. The chemical structure of the three homoisoflavonoids are identified by means of ESI-MS and NMR analysis.
Resumo:
High-speed counter-current chromatography (HSCCC) technique in semi-preparative scale has been successfully applied to the separation of bioactive flavonoid compounds, liquiritigenin and isoliquiritigenin in one step from the crude extract of Glycyrrhiza uralensis Risch. The HSCCC was performed using a two-phase solvent system composed of n-hexane-ethyl acetate-methanol-acetonitrile-water (2:2:1:0.6:2, v/v). Yields of liquiritigenin (98.9% purity) and isoliquiritigenin (98.3% purity) obtained were 0.52% and 0.32%. Chemical structures of the purified liquiritigenin and isoliquiritigenin were identified by electrospray ionization-MS (ESI-MS) and NMR analysis. (c) 2005 Published by Elsevier B.V.
Resumo:
以1-(2-萘基)-3-甲基-5-吡唑啉酮(NMP)作单糖标识剂,经在线串联的LC—ESI—MS建立了单糖衍生物的电喷雾质谱裂解方法。衍生物在质谱裂解中糖类化合物特有的规范信息。借助糖类化合物在ESI-MS条件下表现出的分子离子峰m/z[M+H]~+,及在ESI—MS/MS条件下呈现出的特征碎片离子峰m/z 473,可有效地确定出单糖类化合物的组成。尽管一些脂肪醛和芳香醛也能同时被标识,然而在质谱条件下不产生m/z473的特征碎片离子峰,且它们的洗脱远在糖类组分之后,因此不干扰糖类化合物的分离和结构确定。通过建立的LC—ESI—MS方法,对水解蜂花粉中的单糖进行了分析。结果表明:水解的蜂花粉中含甘露糖(Man)、半乳糖醛酸(GalUA)、葡萄糖醛酸(GlcUA)、鼠李糖(Rha)、葡萄糖(Glc)、半乳糖(Gal)、阿拉伯糖(Ara)、木糖(Xyl)和岩藻糖(Fuc)。本方法为环境样品中单糖类化合物的确定提供了准确、可靠的技术手段。
Resumo:
Six compounds were isolated from the 75% ethanol extract of Nitraria tangutorum seed.On the basis of spectroscopic methods including 1H NMR,13C NMR and ESI-MS and comparison with literature,their structures were elucidated as daucosterol(1),4-hydroxypipecolic acid(2),quercetin(3),allantoin(4),1,2,3,4-tetrahydro-1-methyl-β-carboline-3-carboxylic acid(5) and L-tyrosine(6).Compounds 1,2,3,5 and 6 were isolated from Nitraria tangtorum for the first time.
Resumo:
本文探讨了珠芽蓼全草的化学成分.我们利用硅胶柱多次层析分离和Sephadex LH-20纯化等方法分离得到5个化合物,经NMR,IR,HR-ESI-MS等技术及理化性质鉴定结构,5个化合物分别为β-谷甾醇(β-sitosterol,1)、胡萝卜苷(daucosterol,2)、槲皮素(quercetin,3)、6-O-没食子酰熊果苷(6-O-galloylarbutin,4)、蔗糖(sucrose,5).其中化合物3、4为首次从该植物中分离得到.
Resumo:
An LC method for the determination of 20 amino acids (AAs), using 1,2-Benzo-3,4-dihydrocarbazole-9-ethyl chloroformate (BCEOC) as fluorescent labeling reagent, has been validated and applied for the analysis of AAs in rat plasma at three different states concerning exercise physiology. Identification of AA derivatives was carried out by LC-MS with electrospray ion (ESI), and the MS-MS cleavage mode of the representative tyrosine (Tyr) derivative was analyzed. Gradient elution on a Hypersil BDS C-18 column gave good separation of the derivatives. Excellent linear responses were observed and good compositional data could be obtained from as little as 50-200 mu L of plasma samples. The contents of 20 AAs in rat plasma of three groups (24 rats, group A: quiet state, group B: at exercising exhaust, group C: 12 h after exercising exhaust) exhibited evident difference corresponding to the physiological states. Facile BCEOC derivatization coupled with LC-FLD-ESI-MS analysis allowed the development of a highly sensitive method for the quantitative analysis of trace level of AAs from plasma or other biochemical samples.
Resumo:
A pre-column derivatization method for the sensitive determination of amino acids and peptides using the tagging reagent 1,2-benzo-3,4dihydrocarbazole-9-ethyl chloroformate (BCEOC) followed by high-performance liquid chromatography with fluorescence detection has been developed. Identification of derivatives was carried out by liquid chromatography/electrospray ionization mass spectrometry (LC/ESI-MS/MS). The chromophore of 2-(9-carbazole)-ethyl chloroformate (CEOC) reagent was replaced by 1,2-benzo-3,4-dihydrocarbazole functional group, which resulted in a sensitive fluorescence derivatizing reagent BCEOC. BCEOC can easily and quickly label peptides and amino acids. Derivatives are stable enough to be efficiently analyzed by high-performance liquid chromatography. The derivatives showed an intense protonated molecular ion corresponding m/z (M + H)(+) under electrospray ionization (ESI) positive-ion mode with an exception being Tyr detected at negative mode. The collision-induced dissociation of protonated molecular ion formed a product at m/z 246.2 corresponding to the cleavage of C-O bond of BCEOC molecule. Studies on derivatization demonstrate excellent derivative yields over the pH 9.0-10.0. Maximal yields close to 100% are observed with a 3-4-fold molar reagent excess. Derivatives exhibit strong fluorescence and extracted detzvatization solution with n-hexane/ethyl acetate (10:1, v/v) allows for the direct injection with no significant interference from the major fluorescent reagent degradation by-products, such as 1,2-benzo-3,4-dihydrocarbazole-9-ethanol (BDC-OH) (a major by-product), mono- 1,2-benzo-3,4-dihydrocarbazole-9-ethyl carbonate (BCEOC-OH) and bis-(1,2-benzo-3,4-dihydrocarbazole-9-ethyl) carbonate (BCEOC)(2). In addition, the detection responses for BCEOC derivatives are compared to those obtained with previously synthesized 2-(9-carbazole)-ethyl chloroformate (CEOC) in our laboratory. The ratios AC(BCEOC)/AC(CEOC) = 2.05-6.51 for fluorescence responses are observed (here, AC is relative fluorescence response). Separation of the derivatized peptides and amino acids had been optimized on Hypersil BDS C-18 column. Detection limits were calculated from 1.0 pmol injection at a signal-to-noise ratio of 3, and were 6.3 (Lys)-177.6 (His) fmol. The mean interday accuracy ranged from 92 to 106% for fluorescence detection with mean %CV < 7.5. The mean interday precision for all standards was < 10% of the expected concentration. Excellent linear responses were observed with coefficients of > 0.9999. Good compositional data could be obtained from the analysis of derivatized protein hydrolysates containing as little as 50.5 ng of sample. Therefore, the facile BCEOC derivatization coupled with mass spectrometry allowed the development of a highly sensitive and specific method for the quantitative analysis of trace levels of amino acids and peptides from biological and natural environmental samples. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Pressurized capillary electrochromatography (pCEC) and electrospray ionization-mass spectrometry (ESI-MS) have been hyphenated for protein analysis. Taken cytochrome c, lysozyme, and insulin as samples, the limits of detection (LODs) for absolute concentrations are 10(-11) mol (signal-to-noise ratio S/N = 3) with relative standard deviations (RSDs) of retention time and peak area, respectively, of less than 1.7% and 4.8%. In order to improve the detection sensitivity, on-line concentration by field-enhanced sample-stacking effect and chromatographic zone-sharpening effect has been developed, and parameters affecting separation and detection, such as pH and electrolyte concentration in the mobile phase, separation voltage, as well as enrichment voltage and time, have been studied systematically. Under the optimized conditions, the LODs of the three proteins could be decreased up to 100-fold. In addition, the feasibility of such techniques has been further demonstrated by the analysis of modified insulins at a concentration of 20 mu g/mL.
Resumo:
This study sought to determine the main components (saccharides and phenolic acids) in crude extract of the Chinese herb Tanshen by electrospray ionization Fourier transform ion cyclotron resonant mass spectrometry (ESI-FT-ICR-MS) in negative-ion mode. Eleven compounds were identified as phenolic acids by exact mass measurement and further confirmed by sustained off-resonance irradiation (SORI) CID data. In addition, monosaccharicles and oligosaccharides (n = 2 similar to 5) and a serial of corresponding anionic adducts of saccharide were observed without adding any anions additionally to the extract solution, and the anionic components were unambiguously identified as H2O, HCl, HCOOH, HNO3, C3H6O2, H2SO4 and C5H7NO3 according to the exact mass measurement results.
Resumo:
In vitro a-glucosidase inhibition assays and ultrafiltration liquid chromatography with photodiode array detection coupled to electrospray ionization tandem mass spectrometry (ultrafiltration LC-DAD-ESI-MSn) were combined to screen a-glucosidase inhibitors from hawthorn leaf flavonoids extract (HLFE). As a result, four compounds were identified as alpha-glucosidase inhibitors in the HLFE, and their structures were confirmed to be quercetin-3-O-rha-(1-4)-glc-rha and C-glycosylflavones (vitexin-2 ''-O-glucoside, vitexin-2 ''-O-rhamnoside and vitexin) by high-resolution sustained off resonance irradiation collision-induced dissociation (SORI-CID) data obtained by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS).
Resumo:
A rapid and sensitive method was developed and validated for the determination of MCYST (microcystin)-RR, -LR, and [Dha(7)] MCYST-LR in rat plasma by liquid chromatography-tandem mass spectrometry. The analytes were extracted from rat plasma by protein precipitation, followed by solid-phase extraction. Liquid chromatography with electrospray ionization mass spectrometry, operating in selected reaction monitoring (SRM) mode, was used to quantify MCYST-RR, -LR, and [Dha(7)] MCYST-LR in rat plasma. The recoveries for each analyte in rat plasma ranged from 70.8 to 88.7%. The calibration curve was linear within the range from 0.005 to 1.25 mu g mL(-1). The limit of detection were 1.4, 1.0, 0.6 ng mL(-1) for MCYST-RR, -LR, and [Dha(7)] MCYST-LR. The overall precision was determined on three different days. The values for within- and between-day precision in rat plasma were within 15%. This method was applied to the identification and quantification of microcystins in rat plasma with acute exposure of microcystins via intravenous injection.
Resumo:
The GGA triplet repeats are widely dispersed throughout eukaryotic genomes. (GGA)n or (GGT)n oligonucleotides can interact with double-stranded DNA containing (GGA:CCT)n to form triple-stranded DNA. The effects of 8 divalent metal ions (3 alkaline-earth metals and 5 transition metals) on formation of these purine-rich triple-helix DNA were investigated by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-MS). In the absence of metal ions, no triplex but single-strand, duplex, and purine homodimer ions were observed in mass spectra. The triple-helix DNA complexes were observed only in the presence of certain divalent ions. The effects of different divalent cations on the formation of purine-rich triplexes were compared. Transition-metal ions, especially Co2+ and Ni2+, significantly boost the formation of triple-helix DNA, whereas alkaline-earth metal ions have no positive effects on triplex formation. In addition, Ba2+ is notably beneficial to the formation of homodimer instead of triplex.
Resumo:
Four individual quadruplexes, which are self-assembled in ammonium acetate solution from telomeric sequences of closely related DNA strands - d(G(4)T(4)G(4)), d(G(3)T(4)G(4)), d(G(3)T(4)G(3)), and d(G(4)T(4)G(3)) - have been detected in the gas phase using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The bimolecular quadruplexes associate with the same number of NH4+ in the gas phase as NMR shows that they do in solution. The quadruplex structures formed in solution are maintained in the gas phase. Furthermore, the mass spectra show that the bimolecular quadruplexes generated by the strands d(G(3)T(4)G(3)) and d(G(4)T(4)G(3)) are unstable, being converted into trimolecular and tetramolecular structures with increasing concentrations of NH4+ in the solution. Circular dichroism (CD) spectra reveal structural changes during the process of strand stoichiometric transitions, in which the relative orientation of strands in the quadruplexes changes from an antiparallel to a parallel arrangement. Such changes were observed for the strand d(G(4)T(4)G(3)), but not for the strand d(G(3)T(4)G(3)). The present work provides a significant insight into the formation of various DNA quadruplexes, especially the higher-order species.
Resumo:
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry(MALDI-TOF-MS), in combination with immunoaffinity provided a powerful tool for determining epitope (antigenic determinant) in protein. The linear epitope of the beta(2)-microglobulin was characterized in the paper. The method as follows: at first beta(2)-microglobulin was digested by a proteolytic enzyme to produce an appropriate set of peptide fragments, then peptide fragments containing the linear epitope were selected and separated from the pool of peptide fragments by immunoprecipitation with the monoclonal antibody. The agarose beads were collected carefully after the reaction. Unbound peptides would be washed away, while the peptides containing the epitope would remain bound to the immobilized antibody after. the beads were washed several times with appropriate buffer. At last the masses of the bound peptides were identified directly by MALDI-TOF MS. Using Endoproteinase Glu-C Endoproteinase Lys-C and Trypsin in the experiment, the linear epitope of beta(2)-microglobulin was located within peptide fragment 59-69, that is, DWSFYLLYYTE.