368 resultados para ELECTRONS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We demonstrate that a p-n junction created electrically in HgTe quantum wells with inverted band structure exhibits interesting intraband and interband tunneling processes. We find a perfect intraband transmission for electrons injected perpendicularly to the interface of the p-n junction. The opacity and transparency of electrons through the p-n junction can be tuned by changing the incidence angle, the Fermi energy and the strength of the Rashba spin-orbit interaction (RSOI). The occurrence of a conductance plateau due to the formation of topological edge states in a quasi-one-dimensional (Q1D) p-n junction can be switched on and off by tuning the gate voltage. The spin orientation can be substantially rotated when the samples exhibit a moderately strong RSOI.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using first-principles methods, we systematically study the mechanism of defect formation and electronic structures for 3d transition-metal impurities (V, Cr, Mn, Fe, and Co) doped in silicon nanowires. We find that the formation energies of 3d transition-metal impurities with electrons or holes at the defect levels always increase as the diameters of silicon nanowires decrease, which suggests that self-purification, i.e., the difficulty of doping in silicon nanowires, should be an intrinsic effect. The calculated results show that the defect formation energies of Mn and Fe impurities are lower than those of V, Cr, and Co impurities in silicon nanowires. It indicates that Mn and Fe can easily occupy substitutional site in the interior of silicon nanowires. Moreover, they have larger localized moments, which means that they are good candidates for Si-based dilute magnetic semiconductor nanowires. The doping of Mn and Fe atom in silicon nanowires introduces a pair of energy levels with t(2) symmetry. One of which is dominated by 3d electrons of Mn or Fe, and the other by neighboring dangling bonds of Si vacancies. In addition, a set of nonbonding states localized on the transition-metal atom with e symmetry is also introduced. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.3000445]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Si-doped ZnO can be synthesized on the surface of the early grown Zn2SiO4 nanostructures and form core/ shell coaxial heterostructure nanobelts with an epitaxial orientation relationship. A parallel interface with a periodicity array of edge dislocations and an inclined interface without dislocations can be formed. The visible green emission is predominant in PL spectra due to carrier localization by high density of deep traps from complexes of impurities and defects. Due to band tail localization induced by composition and defect fluctuation, and high density of free-carriers donated by doping, especially the further dissociation of excitons into free-carriers at high excitation intensity, the near-band-edge emission is dominated by the transition of free-electrons to free-holes, and furthermore, exhibits a significant excitation power-dependent red-shift characteristic. Due to the structure relaxation and the thermalization effects, carrier delocalization takes place in deep traps with increasing excitation density. As a result, the green emission passes through a maximum at 0.25I(0) excitation intensity, and the ratio of the violet to green emission increases monotonously as the excitation laser power density increases. The violet and green emission of ZnO nanostructures can be well tuned by a moderate doping and a variation in the excitation density.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We theoretically investigate the electron transport and spin polarization of two coupled quantum wells with Dresselhaus spin-orbit interaction. In analogy with the optical dual-channel directional coupler, the resonant tunneling effect is treated by the coupled-mode equations. We demonstrate that spin-up and -down electrons can be completely separated from each other for the system with an appropriate system geometry and a controllable barrier. Our result provides a new approach to construct spin-switching devices without containing any magnetic materials or applying a magnetic field. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2981204]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate theoretically the magnetic levels and optical properties of zigzag- and armchair-edged hexagonal graphene quantum dots (GQDs) utilizing the tight-binding method. A bound edge state at zero energy appears for the zigzag GQDs in the absence of a magnetic field. The magnetic levels of GQDs exhibit a Hofstadter-butterfly spectrum and approach the Landau levels of two-dimensional graphene as the magnetic field increases. The optical properties are tuned by the size, the type of the edge, and the external magnetic field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Field emissions (FE) from La-doped zinc oxide (ZnO) films are both experimentally and theoretically investigated. Owing to the La-doped effect, the FE characteristic of ZnO films is remarkably enhanced compared with an undoped sample, and a startling low turn-on electric field of about 0.4 V/mu m (about 2.5 V/mu m for the undoped ZnO films) is obtained at an emission current density of 1 mu A/cm(2) and the stable current density reaches 1 mA/cm(2) at an applied field of about 2.1 V/mu m. A self-consistent theoretical analysis shows that the novel FE enhancement of the La-doped sample may be originated from its smaller work function. Due to the effect of doping with La, the Fermi energy level lifts, electrons which tunnelling from surface barrier are consumedly enhancing, and then leads to a huge change of field emission current. Interestingly, it suggests a new effective method to improve the FE properties of film materials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, the excitation energy density dependence of carrier spin relaxation is studied at room temperature for the as-grown and annealed (Ga, Mn) As samples using femtosecond time-resolved pump-probe Kerr spectroscopy. It is found that spin relaxation lifetime of electrons lengthens with increasing excitation energy density for both samples, and the annealed ( Ga, Mn) As has shorter carrier recombination and electron spin relaxation lifetimes as well as larger Kerr rotation angle than the as-grown ( Ga. Mn) As under the same excitation condition. which shows that DP mechanism is dominant in the spin relaxation process for ( Ga, Mn)As at room temperature. The enhanced ultrafast Kerr effect in the annealed (Ga,Mn)As shows the potential application of the annealed ( Ga, Mn) As in ultrafast all-optical spin switches, and also provides a further evidence for the p-d exchange mechanism of the ferromagnetic origin of (Ga, Mn) As.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The sheet carrier concentrations, conduction band profiles and amount of free carriers in the barriers have been determined by solving coupled Schrodinger and Poisson equation self-consistently for coherently grown Al0.3Ga0.7N/GaN and Al0.3Ga0.7N/AlN/GaN structures on thick GaN. The Al0.3Ga0.7N/GaN heterojunction structures with and without 1 nm AlN interlayer have been grown by MOCVD on sapphire substrate, the physical properties for these two structures have been investigated by various instruments such as Hall measurement and X-ray diffraction. By comparison of the theoretical and experimental results, we demonstrate that the sheet carrier concentration and the electrons mobility would be improved by the introduction of an AlN interlayer for Al0.3Ga0.7N/GaN structure. Mechanisms for the increasing of the sheet carrier concentration and the electrons mobility will be discussed in this paper. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The gain saturation behaviors and noise figure are numerically analyzed for quantum-dot semiconductor optical amplifiers (QD-SOAs). The carrier and photon distributions in the longitudinal direction as well as the photon energy dependent facet reflectivity are accounted in the rate equations, which are solved with output amplified spontaneous emission spectrum as iterative variables. The longitudinal distributions of the occupation probabilities and spectral-hole burning are presented for electrons in the excited and ground states of quantum dots. The saturation output power 19.7 dBm and device gain 20.6 dB are obtained for a QD-SOA with the cavity length of 6 rum at the bias current of 500 mA. The influences of them electron intradot relaxation time and the QD capture time on the gain spectrum are simulated with the relaxation time of 1, 30, and 60 ps and capture time of 1, 5, and 10 ps. The noise figure as low as 3.5 dB is expected due to the strong polarization sensitive spontaneous emission. The characteristics of gain saturation and noise figure versus input signal power for QD-SOAs are similar to that of semiconductor. linear optical amplifiers with gain clamping by vertical laser fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The authors report the optical characteristics of GaSb/InAs/GaAs self-assembled heterojunction quantum dots (QDs). With increasing GaSb deposition, the room temperature emission wavelength can be extended to 1.56 mu m. The photoluminescence mechanism is considered to be a type-II transition with electrons confined in InAs and holes in GaSb.(C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on the density functional theory, we study the magnetic coupling properties of Mn-doped ZnO nanowires. For the nanowires with passivated surfaces, the antiferromagnetic state is found and the Mn atoms have a clustering tendency. When the distance between two Mn atoms is large, the system energetically favors the paramagnetic or spin-glass state. For the nanowires with unpassivated surfaces, the ferromagnetic (FM) coupling states appear between the two nearest Mn atoms, and the zinc vacancies can further stabilize the FM states between them. The electrons with enough concentration possibly mediate the FM coupling due to the negative exchange splitting of conduction band minimum induced by the s-d coupling, which could be useful in nanomaterial design for spintronics. (C) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Magnetotransport properties of two-dimensional electron gas have been investigated for three In0.53Ga0.47As/In0.52Al0.48As quantum well samples having two occupied subbands with different well widths. When the intersubband scattering is considered, we have obtained the subband density, transport scattering time, quantum scattering time and intersubband scattering time, respectively, by analyzing the result of fast Fourier transform of the first derivative of Shubnikov-de Haas oscillations. It is found that the main scattering mechanism is due to small-angle scattering, such as ionized impurity scattering, for the first subband electrons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a spin current diode which can work even in a small applied bias condition (the linear-response regime). The prototypal device consists of a hornlike electron waveguide with Rashba spin-orbit interaction, which is connected to two leads with different widths. It is demonstrated that when electrons are incident from the narrow lead, the generated spin conductance fluctuates around a constant value in a wide range of incident energy. When the transport direction is reversed, the spin conductance is suppressed strongly. Such a remarkable difference arises from spin-flipped transitions caused by the spin-orbit interaction. (c) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Spin states and persistent currents are investigated theoretically in a quantum ring with an embedded magnetic ion under a uniform magnetic field including the spin-orbit interactions. The magnetic impurity acts as a spin-dependent delta-potential for electrons and results in gaps in the energy spectrum, consequently suppressing the oscillation of the persistent currents. The competition between the Zeeman splittings and the s-d exchange interaction leads to a transition of the electron ground state in the ring. The interplay between the periodic potential induced by the Rashba and Dresselhaus spin-orbit interactions and the delta-potential induced by the magnetic impurity leads to significant variation in the energy spectrum, charge density distribution, and persistent currents of electrons in the ring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The electronic structure, elastic constants, Poisson's ratio, and phonon dispersion curves of UC have been systematically investigated from the first-principles calculations by the projector-augmented-wave (PAW) method. In order to describe precisely the strong on-site Coulomb repulsion among the localized U 5f electrons, we adopt the local density approximation (LDA) + U and generalized gradient approximation (GGA) + U formalisms for the exchange correlation term. We systematically study how the electronic properties and elastic constants of UC are affected by the different choice of U as well as the exchange-correlation potential. We show that by choosing an appropriate Hubbard U parameter within the GGA + U approach, most of our calculated results are in good agreement with the experimental data. Therefore. the results obtained by the GGA + U with effective Hubbard parameter U chosen around 3 eV for UC are considered to be reasonable. (C) 2009 Elsevier B.V. All rights reserved.