162 resultados para Dye-sensitized Solar Cells


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on experimental results and theoretical analysis effects of the crystal structure on the optical and electrical properties of pyrite FeS2 films produced by thermally sulfurizing iron films at various temperatures have been systematically studied. The results indicate that the crystal structure and some related factors, such as the crystallization and the stoichiometry, remarkably influence the optical and electrical performances of the pyrite films. It is also shown that the preferred orientation of the crystal grain plays a major role in determining the crystal structure and the optical and electrical properties of the pyrite FeS2 films. Also we find that it is the crystal grains, rather than the particles that exercise a decisive influence on the electrical performance of pyrite films. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The GaNAs alloys have been grown by metalorganic chemical vapor deposition (MOCVD) using dimethylhydrazine (DMHv) as the nitrogen precursor, triethylgallium (TEGa) and trimethylgallium (TMGa) as the gallium precursors, respectively. Both symmetric (004) and asymmetric (1 1 5) high-resolution X-ray diffraction (HRXRD) were used to determine the nitrogen content in GaNAs layers. Secondary ion mass spectrometry (SIMS) was used to obtain the impurity content. T e influence of different Ga precursors on GaNAs quality has been investigated. Phase separation is observed in the < 1 1 5 > direction when using TMGa as the Ga precursor but not observed when using TEGa. This phenomenon should originate from the parasitic reaction between the Ga and N precursors. Furthermore. samples grown with TEGa have better quality and less impurity contamination than those with TMGa. Nitrogen content of 5.742% has been achieved using TEGa and no phase separation observed in the sample. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new regime of plasma-enhanced chemical-vapor deposition (PECVD), referred to as "uninterrupted growth/annealing" method, has been proposed for preparation of high-quality hydrogenated amorphous silicon (a-Si:H) films. By using this regime, the deposition process no longer needs to be interrupted, as done in the chemical annealing or layer by layer deposition, while the growing surface is continuously subjected to an enhanced annealing treatment with atomic hydrogen created in the hydrogen-diluted reactant gas mixture at a relatively high plasma power. The intensity of the hydrogen plasma treatment is controlled at such a level that the deposition conditions of the resultant films approach the threshold for microcrystal formation. In addition, a low level of B-compensation is used to adjust the position of the Fermi level close to the midgap. Under these conditions, we find that the stability and optoelectronic properties of a-Si:H films have been significantly improved. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel composite InxGa1-xAs/GaAs/GaAs/AlxGa1-xAs multiple quantum well material with different well widths was studied as a new kind of photoelectrode in a photoelectrochemical cell. The photocurrent spectrum and photocurrent-electrode potential curve were measured in ferrocene nonaqueous solution. Pronounced quantization effects and strong exciton absorption were observed in the photocurrent spectrum. The effects of surface states and interfacial states on the photocurrent-electrode potential curve are discussed. (C) 2000 Elsevier Science S.A. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An improved pulsed rapid thermal annealing (PRTA) has been used for the solid-phase crystallization (SPC) of a-Si films prepared by PECVD. The SPC can be completed with time-temperature budgets such as 10 cycles of 60-s 550 degrees C thermal bias/1-s 850 degrees C thermal pulse. The microstructure and surface morphology of the crystallized films are investigated by X-ray diffraction (XRD). The results indicate that this PRTA is a suitable post-crystallization technique for fabricating large-area poly-Si films on low-cost substrate. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The photovoltaic spectral features and the behaviors of photocurrent versus the electrode potential for near surface In0.15Ga0.85As/GaAs quantum well electrodes have been investigated in nonaqueous solutions of ferrocene and acetylferrocene. The photovoltaic spectrum shows a sharp structure that reflects confined state-to-state exciton transition in the quantum well. Deep dips are observed in the photocurrent versus the electrode potential curves in both electrolytes at the different electrode potentials under the illumination of exciton resonance wavelength. These dips are qualitatively explained by considering the interfacial tunneling transfer of photogenerated electron within the quantum well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Concentrated photovoltaic systems (CPVSs) draw more and more attention because of high photovoltaic conversion efficiency, low consumption of solar cell, and low cost of power generation. However, the fallibility of the tracker in such systems has hindered their practical application for more than twenty years. The tracker is indispensable for a CPVS since only normal-incident sunlight can be focused on the solar cell chips, even a slight deviation of incident light will result in a significant loss of solar radiation, and hence a distinct decrease in electricity output. Generally, the more accurate the tracker is, the more reliable the system is. However, it is not exactly the case for a CPVS reliability, because the more accurate the tracker is, the better environment it demands. A CPVS is usually has to subjected to harsh environmental conditions, such as strong wind, heavy rain or snow, and huge changes of temperature, which leads to the invalidation of the system's high-accuracy tracker. Hence, the reliability of a CPVS cannot be improved only by enhancing the tracker's accuracy. In this paper, a novel compound concentrator, combination of Fresnel lens and photo-funnel, has been adopted in a prototype CPVS. Test results show that the compound concentrator can relax the angle tolerance from one tenth to five degrees of arc at 400 suns, which can help a CPVS endure serious environment and remain its reliability over long period. The CPVS with compound concentrator is attractive for commercial application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two series of films has been prepared by using a new regime of plasma enhanced chemical vapor deposition (PECVD) in the region adjacent to the phase transition from amorphous to crystalline state. The photoelectronic properties of the films have been investigated as a function of crystalline fraction. In comparison with typical a-Si:H, these diphasic films with a crystalline fraction less than 0.3 show a similar optical absorption coefficient, higher mobility life-time product ( LT) and higher stability upon light soaking. By using the diphasic nc-Si/a-Si films as the intrinsic layer, a p-i-n junction solar cell has been prepared with an initial efficiency of 9. 10 % and a stabilized efficiency of 8.56 % (AM 1.5, 100 mW/cm(2)).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Si thin films with different structures were deposited by plasma enhanced chemical vapor deposition (PECVD), and characterized via Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The passivation effect of such different Si thin films on crystalline Si surface was investigated by minority carrier lifetime measurement via a method, called microwave photoconductive decay (mu PCD), for the application in HIT (heterojunction with intrinsic thin-layer) solar cells. The results show that amorphous silicon (a-Si:H) has a better passivation effect due to its relative higher H content, compared with microcrystalline (mu c-Si) silicon and nanocrystalline silicon (nc-Si). Further, it was found that H atoms in the form of Si-H bonds are more preferred than those in the form of Si-H-2 bonds to passivate the crystalline Si surface. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin disulfide (SnS2) nanocrystalline/amorphous blended phases were synthesized by mild chemical reaction. Both X-ray diffraction and transmission electron microscopy measurements demonstrate that the as-synthesized particles presented very small size, with a diameter of only a few nanometers. The photoluminescence (PL) spectrum suggests efficient splitting of photo-generated excitons in poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and SnS2 hybrid films. Organic/inorganic hybrid solar cells comprising MDMO-PPV and SnS2 were prepared, giving photovoltage, photocurrent, fill factor and efficiency values of 0.702 V, 0.549 mA/cm(2), 0.385 and 0.148%, respectively, which suggests that this phase-blended inorganic semiconductor can also serve as a promising solar energy material. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(3,4-ethylenedioxythiopliene):poly(styrene sulfonate) (PEDOT:PSS) films have been electrochemically polymerized in situ on ITO glass substrate in boron trifluoride diethyl etherate electrolyte (BFEE). Cyclic voltammograms show good redox activity and stability of the PEDOT films. These films had been directly used to fabricate organic-inorganic hybrid solar cells with the structure of ITO/PEDOT/ZnO:MDMC-PPV/Al. The solar cells made of electrochemically polymerized films exhibit higher energy conversion efficiencies compared with that prepared by the spin-coating method, and the highest value is 0.33%. This in-situ electropolymerized method effectively simplifies fabricating procedures and may blaze a facile and economical route for producing high-efficiency solar cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A simple one-pot method is developed to prepare size-and shape-controlled copper(I) sulfide (Cu2S) nanocrystals by thermolysis of a mixed solution of copper acetylacetonate, dodecanethiol and oleylamine at a relatively high temperature. The crystal structure, chemical composition and morphology of the as-obtained products are characterized by powder x-ray diffraction (PXRD), x-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The morphology and size of the Cu2S nanocrystals can be easily controlled by adjusting the reaction parameters. The Cu2S nanocrystals evolve from spherical to disk-like with increasing reaction temperature. The spherical Cu2S nanocrystals have a high tendency to self-assemble into close-packed superlattice structures. The shape of the Cu2S nanodisks changes from cylinder to hexagonal prism with prolonged reaction time, accompanied by the diameter and thickness increasing. More interestingly, the nanodisks are inclined to self-assemble into face-to-face stacking chains with different lengths and orientations. This one-pot approach may extend to synthesis of other metal sulfide nanocrystals with different shapes and sizes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Applying the model dielectric function method, we have expressed the absorption coefficient of GaSb analytically at room temperature relating to the contribution of various critical points of its electronic band structure. The calculated absorption spectrum shows good agreement with the reported experimental data obtained by spectral ellipsometry on nominally undoped sample. Based on this analytical absorption spectrum, we have qualitatively evaluated the response of active absorbing layer structure and its photoelectric conversion properties of GaSb thermophotovoltaic device on the perturbation of external thermal radiation induced by the varying radiator temperature or emissivity. Our calculation has demonstrated that desirable thickness to achieve the maximum conversion efficiency should be decreased with the increment of radiator temperature and the performance degradation brought by any structure deviation from its optimal one would be stronger meanwhile. For the popular radiator temperature, no more than 1500 K in a real solar thermophotovoltaic system, and typical doping profile in GaSb cell, a reasonable absorbing layer structure parameter should be controlled within 100-300 nm for the emitter while 3000-5000 nm for the base.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic properties of wurtzite/zinc-blende (WZ/ZB) heterojunction GaN are investigated using first-principles methods. A small component of ZB stacking formed along the growth direction in the WZ GaN nanowires does not show a significant effect on the electronic property, whereas a charge separation of electrons and holes occurs along the directions perpendicular to the growth direction in the ZB stacking. The later case provides an efficient way to separate the charge through controlling crystal structure. These results have significant implications for most state of the art excitonic solar cells and the tuning region in tunable laser diodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The optical and structural properties of anodized AlxGa1-xAs films were investigated by using optical reflectance, X-ray photoemission and Auger electron spectroscopy (XPS and AES). II was found that the anodization process occurs progressively from the surface to the bulk of AlxGa1-xAs and the formed oxidation film comprises mainly oxides of Al and Ga together with a relatively small amount of As. The refractive indexes of the anodized Al0.8Ga0.2As film and Al0.8Ga0.2As film itself were deduced to be about 1.80 and 3.25, respectively, indicating that the anodization film is desirable for anti-reflection coating of the surface of AlxGa1-xAs/GaAs solar cells. (C) 1997 Elsevier Science S.A.