210 resultados para BAND GAP


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The magnetoexciton polaron (MP) is investigated theoretically in a diluted magnetic semiconductor quantum dot (QD), with the Coulomb interaction and the sp-d exchange interaction included. The MP energy decreases rapidly with increasing magnetic field at low magnetic field and saturates at high magnetic field for small QDs, and the dependences of the MP energy on magnetic field are quite different for different QD radii due to the different carrier-induced magnetic fields B-MP. The competition between the sp-d exchange interaction and the band gap shrinkage results in there being a maximum exhibited by the MP energy With increasing temperature. Our numerical results are in good agreement with experiment (Maksimov A A, Bacher G, MacDonald A, Kulakovskii V D, Forchel A, Becker C R, Landwehr G and Molenkamp L W 2000 Phys. Rev. B 62 R7767).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photoluminescence (PL) of strained SiGe/Si multiple quantum wells (MQW) with flat and undulated SiGe well layers was studied at different temperature. With elevated temperature from 10K, the no-phonon (NP) peak of the SiGe layers in the flat sample has firstly a blue shift due to the dominant transition converting from bound excitons (BE) to free excitons (FE), and then has a red shift when the temperature is higher than 30K because of the narrowing of the band gap. In the undulated sample, however, monotonous blue shift was observed as the temperature was elevated from 10 K to 287 K. The thermally activated electrons, confined in Si due to type-II band alignment, leak into the SiGe crest regions, and the leakage is enhanced with the elevated temperature. It results in a blue shift of the SiGe luminescence spectra.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ZnS:Te epilayers with Te concentration from 0.5% to 3.1% were studied by photoluminescence under hydrostatic pressure at 15 K. Two emission bands related to the isolated Te-1 and Te-2 pair isoelectronic centers were observed in the samples with Te concentrations of 0.5% and 0.65%. For the samples with Te concentrations of 1.4% and 3.1%, only the Te-2-related peak was observed. The pressure coefficients of all the Te-1-related bands were found to be unexpectedly much larger than that of the ZnS band gap. The pressure coefficients for all the Te-2-related bands are, however, rather smaller than that of ZnS band gap as usually observed. Analysis based on a Koster-Slater model indicates that an increase of the valence bandwidth with pressure is the main reason for the faster pressure shift of the Te-1 centers, and the huge difference in the pressure behavior of the Te-1 and Te-2 centers is due mainly to the difference in the pressure-induced enhancement of the impurity potential on the Te-1 and Te-2 centers. (C) 2002 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Hamiltonian of the wurtzite quantum rods with an ellipsoidal boundary is given after a coordinate transformation. The energies, wave functions, and transition possibilities are obtained as functions of the aspect ratio e with the same method we used on spherical dots. With an overall consideration of both the transition matrix element and the Boltzmann distribution we explained why the polarization factor increases with increasing e and approaches a saturation value, which tallies quite well with the experimental result. When e increases more and more S-z states are mixed into the ground, second, and third states of J(z)=1/2, resulting in an increase of the emission of z polarization. It is just the linear terms of the momentum operator in the hole Hamiltonian that cause the mixing of S and P states in the hole ground state. The effects of the crystal field splitting energy, temperature, and transverse radius to the polarization are also considered. We also calculated the band gap variation with the size and shape of the quantum rods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ZnS1-xTex (0.02less than or equal toxless than or equal to0.3) alloys are studied by photoluminescence under hydrostatic pressure at room temperature. Only a wide emission band is observed for each sample. Its peak energy is much lower than the corresponding band gap of alloys. These bands are ascribed to the radiative annihilation of excitons bound at Te-n(ngreater than or equal to2) isoelectronic centers. The pressure coefficients of the emission bands are smaller than those of alloy band gaps from 48% to 7%. The difference of the pressure coefficient of the emission band and the band gap increases when the binding energy of Te-n centers decreases. It seems contrary to our expectation and needs further analysis. The integrated intensities of emission bands decrease with increasing pressure due to the decreasing of the absorption coefficient associated with the Te-n centers under pressure. According to this model the Stokes shifts between the emission and absorption bands of the Te-n centers are calculated, which decrease with the increasing Te composition in alloys.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The electronic structure of diluted magnetic semiconductor (DMS) superlattices under an in-plane magnetic field is studied within the framework of the effective-mass theory; the strain effect is also included in the calculation. The numerical results show that an increase of the in-plane magnetic field renders the DMS superlattice from the direct band-gap system to the indirect band-gap system, and spatially separates the electron and the hole by changing the type-I band alignment to a type-II band alignment. The optical transition probability changes from type I to type II and back to type I like at large magnetic field. This phenomenon arises from the interplay among the superlattice potential profile, the external magnetic field, and the sp-d exchange interaction between the carriers and the magnetic ions. The shear strain induces a strong coupling of the light- and heavy-hole states and a transition of the hole ground states from "light"-hole to "heavy"-hole-like states.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The GaNAs alloys have been grown by metalorganic chemical vapor deposition (MOCVD) using dimethylhydrazine (DMHv) as the nitrogen precursor, triethylgallium (TEGa) and trimethylgallium (TMGa) as the gallium precursors, respectively. Both symmetric (004) and asymmetric (1 1 5) high-resolution X-ray diffraction (HRXRD) were used to determine the nitrogen content in GaNAs layers. Secondary ion mass spectrometry (SIMS) was used to obtain the impurity content. T e influence of different Ga precursors on GaNAs quality has been investigated. Phase separation is observed in the < 1 1 5 > direction when using TMGa as the Ga precursor but not observed when using TEGa. This phenomenon should originate from the parasitic reaction between the Ga and N precursors. Furthermore. samples grown with TEGa have better quality and less impurity contamination than those with TMGa. Nitrogen content of 5.742% has been achieved using TEGa and no phase separation observed in the sample. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The photoluminescence spectra of the single delta -doped AlGaAs/InGaAs/GaAs pseudomorphic HEMTs with different thickness of spacer layer were studied. There are two peaks in the PL spectra of the structure corresponding to two sub-energy levels of the InGaAs quantum well. It was found that the photoluminescence intensity ratio of the two peaks changes with the spacer thickness of the pseudomorphic HEMTs. The reasons were discussed. The possible use of this phenomenon in optimization of pseudomorphic HEMTs was also proposed. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Under short pulse laser excitation, we have observed an extra high-energy photoluminescence (PL) emission from GaNAs/GaAs single quantum wells (QWs). It dominates the PL spectra under high excitation and/or at high temperature. By measuring the PL dependence on both temperature and excitation power and by analyzing the time-resolved PL results, we have attributed the PL peak to the recombination of delocalized excitons in QWs. Furthermore, a competition process between localized and delocalized excitons is observed in the temperature-dependent PL spectra under the short pulse excitation. This competition is believed to be responsible for the temperature-induced S-shaped PL shift often observed in the disordered alloy semiconductor system under continuous-wave excitation. (C) 2001 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photoluminescence from a GaN0.015As0.985/GaAs quantum well has been measured at 15 K under hydrostatic pressure up to 9 GPa. Both the emissions from the GaNAs well and GaAs barrier are observed. The GaNAs-related peak shows a much weaker pressure dependence compared to that of the GaAs band gap. A group of new peaks appear in the spectra when the pressure is beyond 2.5 GPa, which is attributed to the emissions from the N isoelectronic traps in GaAs. The pressure dependence of the GaNAs-related peaks was calculated using the two-level model with the measured pressure coefficients of the GaAs band gap and N level as fitting parameters. It is found that the calculated results deviate seriously from the experimental data. An increasing of the emission intensity and the linewidth of the GaNAs-related peaks was also observed and briefly discussed. (C) 2001 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Effects of rapid thermal annealing and SiO2 encapsulation on GaNAs/GaAs single quantum wells grown by plasma-assisted molecular-beam epitaxy were studied. Photoluminescence measurements on a series of samples with different well widths and N compositions were used to evaluate the effects. The intermixing of GaNAs and GaAs layers was clearly enhanced by the presence of a SiO2-cap layer. However, it was strongly dependent on the N composition. After annealing at 900 degreesC for 30 s, a blueshift up to 62 meV was observed for the SiO2-capped region of the sample with N composition of 1.5%, whereas only a small blueshift of 26 meV was exhibited for the bare region. For the sample with the N composition of 3.1%, nearly identical photoluminescence peak energy shift for both the SiO2-capped region and the bare region was observed. It is suggested that the enhanced intermixing is mainly dominated by SiO2-capped layer induced defects-assisted diffusion for the sample with smaller N composition, while with increasing N composition, the diffusion assisted by interior defects become predominant. (C) 2001 American Institute of Physics.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effect of ion-induced damage on GaNAs/GaAs quantum wells (QWs) grown by molecular beam epitaxy employing a DC plasma as the N source was investigated. Ion-induced damage results in: (i) an observed disappearance of pendellosung fringes in the X-ray diffraction pattern of the sample; (ii) a drastic decrease in intensity and a broadening in the full-width at half-maximum of photoluminescence spectra. It was shown that ion-induced damage strongly affected the bandedge potential fluctuations of the QWs. The bandedge potential fluctuations for the samples grown with and without ion removal magnets (IRMs) are 44 and 63 meV, respectively. It was found that the N-As atomic interdiffusion at the interfaces of the QWs was enhanced by the ion damage-induced defects. The estimated activation energies of the N-As atomic interdiffusion for the samples grown with and without IRMs are 3.34 and 1.78 eV, respectively. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper is a review of research and development on semiconductor materials, which covers main scientific activities in this field. The present status acid future prospects of studies on semiconductor materials, such as silicon crystals, GaAs related III-V compound semiconductor materials and GaAs, InP and silicon based quantum well and superlattice materials, quantum wires and quantum dots materials, microcavity and photonic crystals, materials for quantum computation and wide band gap materials, are briefly discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Interdigital metal-semiconductor-metal (MSM) ultraviolet photoconductive detectors have been fabricated on undoped GaN films grown by molecular beam epitaxy (MBE), Response dependence on wavelength, applied current, excitation powers and chopper frequency has been extensively investigated. It is shown that the photodetector's spectral response remained nearly constant for wavelengths above the band gap and dropped sharply by almost three orders of magnitude for wavelengths longer than the band gap. It increases linearly with the applied constant current, but very nonlinearly with illuminating power. The photodetectors showed high photoconductor gains resulting from trapping of minority carriers (holes) at acceptor impurities or defects. The results demonstrated the high quality of the GaN crystal used to fabricate these devices. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An X-ray diffraction method, estimating the strain relaxation in an ultrathin layer, has been discussed by using kinematic and dynamical X-ray diffraction (XRD) theory. The characteristic parameter Delta Omega, used as the criterion of the strain relaxation in ultrathin layers, is deduced theoretically. It reveals that Delta Omega should be independent of the layer thickness in a coherently strained layer. By this method, we characterized our ultrathin GaNxAs1-x samples with N contents up to 5%. XRD measurements show that our GaNxAs1-x layers are coherently strained on GaAs even for such a large amount of N. Furthermore, a series of GaNxAs1-x samples with same N contents but different layer thicknesses were also characterized. It was found that the critical thickness (L-c) of GaNAs in the GaAs/GaNAs/GaAs structures determined by XRD measurement was 10 times smaller than the theoretical predictions based on the Matthews and Blakeslee model. This result was also confirmed by in situ observation of reflection high-energy electron diffraction (RHEED) and photoluminescence (PL) measurements. RHEED observation showed that the growth mode of GaNAs layer changed from 2D- to 3D-mode as the layer thickness exceeded L-c. PL measurements showed that the optical properties of GaNAs layers deteriorated rapidly as the layer thickness exceeded L-c. (C) 2000 Elsevier Science B.V. All rights reserved.