175 resultados para Agrobacterium mediated transformation
Resumo:
Three-point bending experiments were performed on as-cast and annealed samples of Zr52.5Cu17.9Ni14.6Al10Ti5 (Vit105) bulk metallic glasses over a wide range of temperatures varying from room temperature (293 K) to liquid nitrogen temperature (77 K). The results demonstrated that the free volume decrease due to annealing and/or cryogenic temperature can reduce the propensity for the formation of multiple shear bands and hence deteriorate plastic deformation ability. We clearly observed a sharp ductile-to-brittle transition (DBT), across which microscopic fracture feature transfers from micro-scale vein patterns to nano-scale periodic corrugations. Macroscopically, the corresponding fracture mode changes from ductile shear fracture to brittle tensile fracture. The shear transformation zone volume, taking into account free volume, temperature and strain rate, is proposed to quantitatively characterize the DBT behavior in fracture of metallic glasses.
Resumo:
For an orthotropic laminate, an equivalent system with doubly cyclic periodicity is introduced. Then a 3-dimensional finite element model for the equivalent system is transformed into the unitary space, where the large finite element matrix equation is decoupled into some small matrix equations. Such a decoupling very efficiently reduces the computational effort. For an orthotropic laminate with four clamped edges, no exact elasticity solution is available, and the deflection values predicted by different methods have a considerable difference each other for a small length-to-thickness ratio. The present predictions are the largest because the present method is a full 3-dimensional finite element analysis without superfluous constraints. Illustrative numerical examples are presented to observe the distributions of stresses through the thickness of the laminates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The deformation of [0001]-oriented ZnO nanorods with hexagonal cross sections under uniaxial tensile loading is analyzed through molecular statistical thermodynamics (MST) simulations. The focus is on the size dependence of mechanical behavior in ZnO nanorods with diameters ranging from 1.95 to 17.5 nm. An irreversible phase transformation from the wurtzite (P6(3)mc space group) structure to a tetragonal structure (P4(2)/mnm space group) occurs during the tensile loading process. Young's modulus before the transformation demonstrates a size dependence consistent with what is observed in experiments. A stronger size dependence of response is seen after the transformation and is attributed to the polycrystalline nature of the transformed structure. A comparison of the MST and molecular dynamics (MD) methods shows that MST is 60 times faster than MD and yields results consistent with the results of MD.
Resumo:
Phase transformation and subdomain structure in [0001]-oriented gallium nitride (GaN) nanorods of different sizes are studied using molecular dynamics simulations. The analysis concerns the structure of GaN nanorods at 300 K without external loading. Calculations show that a transformation from wurtzite to a tetragonal structure occurs along {0110} lateral surfaces, leading to the formation of a six-sided columnar inversion domain boundary (IDB) in the [0001] direction of the nanorods. This structural configuration is similar to the IDB structure observed experimentally in GaN epitaxial layers. The transformation is significantly dependent on the size of the nanorods.
Resumo:
地锦(Parthenocissus tricuspidata)为葡萄科(Vitaceae)地锦属(Parthenocissus)多年生大型落叶木质藤本植物,集绿化、环境保护、药用价值为一体,开发利用前景非常广阔。为了进一步有效地利用及增加它的适应性,本论文对地锦的遗传转化及其抑菌活性进行了初步研究。 利用根癌农杆菌(Agrobacterium tumefaciens)介导对地锦进行遗传转化。所转外源目的基因为干旱应答因子结合蛋白DREB基因,克隆自拟南芥,受干旱应答基因启动子rd29Bp驱动。将此基因与pCAMBIA2301重组构建得到植物表达载体p2326。p2326携报告基因b-葡萄糖苷酸酶基因(gus)和选择基因新霉素磷酸转移酶基因(npt II)。然后将p2326导入根癌农杆菌EHA105,对地锦愈伤组织及外植体茎段进行转化。经3-4轮卡那霉素选择培养后,PCR及GUS组织染色验证,表明成功获得了转基因愈伤组织。 对地锦愈伤组织进行耐盐及脯氨酸含量测定。结果表明,转基因愈伤组织与非转基因愈伤组织相比,对高盐的耐受力有较大提高。在250 mM NaC1的继代培养基中,携DREB基因的愈伤组织能够存活20 d以上,而对照在10 d后大多数褐化死亡。高盐胁迫时转基因材料脯氨酸含量高于对照,并能够维持较长时间。 研究还发现,来自室外自然生长的地锦茎、叶,对根癌农杆菌有极强的抑制作用。 因此,对地锦的抑菌作用进行初步研究。 对一年中不同时期(分别采于4月、8月、12月)的地锦茎、叶进行抑菌活性初步研究。结果表明,12月份地锦叶片对所选细菌抑制作用最强。然后对其进行分溶剂萃取。分别用极性递增的有机溶剂依次提取地锦中的有效成分、逐级分离、浓缩干燥,得到石油醚部、乙酸乙酯部、正丁醇部和水部等不同极性溶剂萃取物。选择革兰氏阳性菌和阴性菌共5种对得到的各部分粗提物分别做抑菌实验,表明正丁醇部的抑菌活性最强,水部提取物有一定抑制作用,而石油醚部、乙酸乙酯部没有表现出明显抑菌作用。 地锦正丁醇提取物对大肠杆菌、枯草杆菌、短小芽孢杆菌、农杆菌及酵母菌的最低抑制浓度(MIC)分别为0.25,0.3,0.25,0.3,1g/mL。其抑菌活性随着浓度增加而增强,而且抑菌活性具有较好的热稳定性。 研究发现地锦所产生的抑菌物质不仅对无耐药性的细菌具有抑制作用,而且还对某些耐药性细菌具有抑制作用。目前,细菌对抗生素的耐药性已成为全球关注的问题,寻找新型抗生素已迫在眉捷,地锦抑菌物质的研究为新抗菌药物的研制开发提供了新思路。 上述研究结果,为地锦的遗传改良及开发利用打下基础。
Resumo:
赤霉素是一种高效能的广谱植物生长调节剂,为五大植物激素之一,具有重要的生物学功能。目前利用赤霉素突变体研究生物合成途径和信号转导已经成为热点。 GA 20-氧化酶是GA生物合成中的一类关键酶,它位于GA合成途径的中心位置。本研究根据烟草(Nicotiana tabacum)GA 20-氧化酶基因序列,设计2对分别含有特定酶切位点的特异引物,以烟草基因组DNA为模板,扩增目的基因(约250 bp)片段。将正、反向目的片段分别插入中间载体的内含子两侧,再经BamH I和Sac I双酶切回收约700 bp的目的片段,插入到双元载体质粒p2355中,成功构建了含GA 20-氧化酶基因片段反向重复序列的植物表达载体p23700。分别将p2355质粒和p23700质粒导入根癌农杆菌(Agrobacterium tumefaciens)EHA105中并转化烟草叶片细胞,经卡那霉素选择培养,PCR及GUS组织染色鉴定,获得转基因烟草植株。以EHA105-p2355转化的烟草,获得41株转基因植株,均没有矮化表型;而以EHA105-p23700转化的烟草,获得转基因植株14株,其中具有矮化表型的烟草10株,表明反向重复序列转录产物能形成发夹RNA(hpRNA),产生小分子干扰RNA(small interferring RNA,简称siRNA),干扰目的基因的表达。 赤霉素含量测定表明矮化植株中赤霉素合成途径的最终产物GA3总含量明显低于野生型烟草植株。荧光定量PCR结果表明,矮化转基因烟草的GA 20-氧化酶基因表达量受到明显抑制,表达量明显低于野生型对照。同时对上游内根-贝壳杉合成酶(Ent-kaurene synthase,KS)基因,下游的GA-3β羟化酶基因进行了RT-PCR分析,结果显示上游基因的表达没有规律性变化,而下游基因表达量亦降低。上述结果表明,GA 20-氧化酶基因的表达被有效地干扰了,表达受到抑制,从而影响植株体内GA3的合成,影响植株的生长发育,导致植株矮化。并推测,GA 20-氧化酶基因受到抑制,可能影响下游基因的表达。并且通过干旱胁迫测试,发现矮化植株相对于野生型植株及不含干扰片段的转基因植株,对干旱的耐受力有了很大的提高,具有更强的耐受力。 研究结果为进一步进行相关研究奠定基础。 Gibberellin(GA) is an efficient plant growth regulator. As one of five major plant hormones, it plays an important biological function. Using GA mutant for investigating biosynthetic pathways and signal transduction has become high lights. GA 20-oxidase is a crucial enzyme involved in gibberellin biosynthesis. According to tobacco (Nicotiana tabacum) GA 20-oxidase enzyme gene sequence and based on binary vector p2355, we constructed a plant expression vector p23700, which habors an inverted repeat DNA fragment of GA 20-oxidase gene drivered by Cauliflower mosaic virus promtor (CaMV 35Sp). Binary plasmid p2355 had no inverted repeat DNA fragment of GA 20-oxidase gene. The vector p2355 and p23700 were introduced into Agrobacterium tumefaciens EHA105 and tobacco leaf transformation was conducted. After selected by kanamycin and characterized by PCR and GUS hischemical reaction, transsgenic plants were obtained. Fourtheen transgenic plants, which were transformed by EHA105-p23700, were obtained. Among them, 10 were dwarf mutants. However, 41 transgenic plants with the same normal phenotype as wild type,which were transformed by EHA105-p2355, were obtained. Analysis of Gibberellin contents showed that it was lower in dwarf mutants than in normal phenotype plants. Moreover, comparing to normal phenotype plants including wild type and transgenic plants with no interference fragment, the drought tolerance of dwarf plants have greatly increased. And their proline content increased obviously after drought test. Fluorescence quantitative real time PCR (RT-PCR) showed that GA 20-oxidase gene expression was significantly inhibited in dwarf transgenic tobacco. Meanwhile, the expression of the upstream gene ent-kaurene synthase (KS) gene and downstream gene GA-3β hydroxylase gene was also detected by RT-PCR. The results presented that KS gene expression had no regular change while GA-3β hydroxylase gene expression reduced. It implied that inhibiting GA 20-oxidase gene probably reduce the expression of downstream genes. The results showed that the transcriptional products of the foreign inverted repeat fragment can form hairpin RNA (hpRNA) to induce RNAi. It presented that GA 20-oxidase gene expression was effectively interfered, resulting in reducing GA3 synthesis and inhibiting plant growth and development, then dwarf plants were produced. However, the dwarf plants had higher tolerance of drought.