344 resultados para trapped ions
Resumo:
国科图
Resumo:
IEECAS SKLLQG
Resumo:
Laser-induced fragmentation of C-60 has been studied using a time-of-flight mass spectrometric technique. The average kinetic energies of fragment ions C-n(+) (n <= 58) have been extracted from the measured full width at half maximum (FWHM) of ion beam profiles. The primary formation mechanism of small fragment ion C-n(+) (n < 30) is assumed to be a two-step fragmentation process: C60 sequential decay to unstable C-30(+) ion and the binary fission of C-30(+). Considering a second photo absorption process in the later part of laser pulse duration, good agreement is achieved between experiment and theoretical description of photoion formation. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Size modification of Au nanoparticles (NPs), deposited on the Au-thick film surface and irradiated by slow highly charged ions (SHCI) 40Arq+ (3 6 q 6 12) with fixed low dose of 4.3 1011 ions/cm2 and various energy ranging from 74.64 to 290.64 keV at room temperature (293.15 K), was investigated by atomic force microscopy (AFM) and transmission electron microscopy (TEM). The effect of projectile kinetic energy on the modified size of NPs was explored by an appropriate choice of the fixed process parameters such as ion flux, irradiation temperature, incident angle, irradiation time, etc. The morphological changes of NPs were interpreted by models involving collisional mixing, Ostwald ripening (OR) and inverse Ostwald ripening (IOR) of spherical NPs on a substrate. A critical kinetic energy as well as a critical potential energy of the projectile in the Au NPs size modification process were observed.
Resumo:
An investigation of a commercial oxide dispersion-strengthened steel (MA9561) irradiated with high energy Ne-ions to high doses at elevated temperatures is presented. Specimens of MA956 oxide dispersion strengthened steel together with a 9% Cr ferritic/martensitic steel, e.g., Grade 92 steel were irradiated simultaneously with 20Ne-ions (with 122 MeV) to successively increasing damage levels of 1, 5 and 10 dpa at the damage peak at 440 C and 570 C, respectively. Cross-sectional microstructures of the specimens were investigated with transmission electron microscopy. MA956 oxide dispersion strengthened steel showed a higher resistance to void swelling especially to void growth at the grain boundaries than the ferritic/martensitic steel, e.g., Grade 92 steel did, and thus exhibited a prominence for an application in the situation of a high He production at high temperatures. The suppression of the growth of voids especially at the grain boundaries in MA956 is ascribed to an enhanced recombination of the point defects and a trapping of Ne atoms at the interfaces of the yttrium–aluminum oxide particles and the matrix.
Resumo:
Human hepatoma (SMMC-7721) and normal liver (L02) cells were irradiated with c-rays, 12C6+ and 36Ar18+ ion beams at the Heavy Ion Research Facility in Lanzhou (HIRFL). By using the Calyculin-A induced premature chromosome condensation technique, chromatid-type breaks and isochromatid-type breaks were scored separately. Tumor cells irradiated with heavy ions produced a majority of isochromatid break, while chromatid breaks were dominant when cells were exposed to c-rays. The relative biological effectiveness (RBE) for irradiation-induced chromatid breaks were 3.6 for L02 and 3.5 for SMMC-7721 cell lines at the LET peak of 96 keVlm 1 12C6+ ions, and 2.9 for both of the two cell lines of 512 keVlm 1 36Ar18+ ions. It suggested that the RBE of isochromatid-type breaks was pretty high when high-LET radiations were induced. Thus we concluded that the high production of isochromatid-type breaks, induced by the densely ionizing track structure, could be regarded as a signature of high-LET radiation exposure.
Resumo:
Here we used cytokinesis-block micronucleus assay to measure the biological response along the penetrate depth of ions in water in human lymphocytes exposed to 100 MeV/u incident carbon ions in vitro. Polyethylene shielding was used to change the penetration depth of ions in water. A quantitative biological response curve was generated for micronuclei induction. The results showed a marked increase with the penetrate depth of ions in water in the micronuclei formation, which was consistent with a linearenergy- transfer dependent increase in biological effectiveness. The dose–response relationship for MN information was different at different penetrate depth of ions in water, at the 6 and 11.2 mm penetrate depth of ions in water, the dose–response relationships for the micronucleus frequencies induced by carbon ions irradiation were linear; while it was power function at 17.1 mm penetrate depth.