192 resultados para superconducting material


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some superconducting magnets research at IMP (Institute of Modern Physics, CAS, Lanzhou) will be described in this paper. Firstly, a superconducting electron cyclotron resonance ion source (SECRAL) was successfully built to produce intense beams of highly charged heavy ions for Heavy Ion Research Facility in Lanzhou (HIRFL). An innovation design of SECRAL is that the three axial solenoid coils are located inside of a sextupole bore in order to reduce the interaction forces between the sextupole coils and the solenoid coils. For 28 GHz operation, the magnet assembly can produce peak mirror fields on axis of 3.6 T at injection, 2.2 T at extraction, and a radial sextupole field of 2.0 T at plasma chamber wall. Some excellent results of ion beam intensity have been produced and SECRAL has been put into operation to provide highly charged ion beams for HIRFL since May 2007. Secondly, a super-ferric dipole prototype of FAIR Super-FRS is being built by FCG (FAIR China Group) in cooperation with GSI. Its superconducting coils and cryostat is made and tested in the Institute of Plasma Physics (IPP, Hefei), and it more 50 tons laminated yoke was made in IMP. This super-ferric dipole static magnetic field was measured in IMP, it reach to the design requirement, ramping field and other tests will be done in the future. Thirdly, a 3 T superconducting homogenous magnetic field solenoid with a 70 mm warm bore has been developed to calibrate Hall sensor, some testing results is reported. And a penning trap system called LPT (Lanzhou Penning Trap) is now being developed for precise mass measurements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 7 Tesla superconducting magnet with a clear warm bore of 156 mm in diameter has been developed for Lanzhou Penning Trap at the Institute of Modern Physics for high precision mass measurement. The magnet is comprised of 9 solenoid coils and operates in persistent mode with a total energy of 2.3 MJ. Due to the considerable amount of energy stored during persistent mode operation, the quench protection system is very important when designing and operating the magnet. A passive protection system based on a subdivided scheme is adopted to protect the superconducting magnet from damage caused by quenching. Cold diodes and resistors are put across the subdivision to reduce both the voltage and temperature hot spots. Computational simulations have been carried in Opera-quench. The designed quench protection circuit and the finite element method model for quench simulations are described; the time changing of temperature, voltage and current decay during the quench process is also analysed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The superconducting magnet of the LPT (Lanzhou Penning trap) consists of nine coaxial coils. The maximum magnetic field is 7 T and thus results in a large magnetic force. In order to assure the mechanical stability, it is necessary to do the stress analysis of the magnet system. The 3D Finite Element Analysis of thermal and mechanical behavior was presented in this paper. For the numerical simulation and analysis of the phenomena inside the structure, the ADINA and TOSCA code were chosen right from start. The ADINA code is commonly used for numerical simulations of the structure analysis [1] and the TOSCA code is professional software to calculate the magnetic field and Lorentz Forces. The results of the analysis were evaluated in terms of the stress and deformation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A 3 T superconducting magnet with a 70 mm diameter warm bore and energy storage of 47 kJ has been successfully fabricated and tested, which can be used to calibrate Hall sensors in high magnetic field as well as conduct superconducting experiments. The magnet consists of three solenoid coils and an iron yoke. The homogeneity of the magnetic field in the region of interest (ROI) is +/- 6.0 x 10(-5). The coils of the magnet were fabricated with NbTi-Cu superconducting wire and the stray magnetic field is shielded by an iron yoke. The coils and yoke are fully immersed in a helium vessel. The optimized structural design, stress and quench simulation, fabrication and test results are presented in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For heat energy storage application, polyurea. microcapsules containing phase change material, n-eicosane, were synthesized by using interfacial polymerization method with toluene- 2,4-diisocyanate (TDI) and diethylenetriamine (DETA) as monomers in an emulsion system. Poly(ethylene glycol)octyl-phenyl ether (OP), a nonionic surfactant, was the emulsifier for the system. The experimental result indicates that TDI was reacted with DETA in a mass ratio of 3 to 1. FT-IR spectra confirm the formation of wall material, polyurea, from the two monomers, TDI and DETA. Encapsulation efficiency of n-eicosane is about 75%. Microcapsule of n-eicosane melts at a temperature close to that of n-eicosane, while its stored heat energy varies with core material n-eicosane when wall material fixed. Thermo-gravimetric analysis shows that core material n-eicosane, micro-n-eicosane and wall material polyurea can withstand temperatures up to 130, 170 and 250 degreesC, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For thermal energy storage application, polyurea microcapsules about 2.5 mum in diameter containing phase change material were prepared using interfacial polycondensation method. In the system droplets in microns are first formed by emulsifying an organic phase consisting of a core material ( n-hexadecane) and an oil-soluble reactive monomer, toluene-2, 4-diisocyanate (TDI), in an aqueous phase. By adding water-soluble reactive monomer, diamine, monomers TDI and diamine react with each other at the interface of micelles to become a shell. Ethylenediamine (EDA), 1, 6-hexane diamine (HDA) and their mixture were employed as water-soluble reactive monomers. The effects of diamine type on chemical structure and thermal properties of the microcapsules were investigated by FT-IR and thermal analysis respectively. The infrared spectra indicate that polyurea microcapsules have been successfully synthesized; all the TG thermographs show microcapsules containing n-hexadecane can sustain high temperature about 300 degreesC without broken and the DSC measurements display that all samples possess a moderate heat of phase transition; thermal cyclic tests show that the encapsulated paraffin kept its energy storage capacity even after 50 cycles of operation. The results obtained from experiments show that the encapsulated n-hexadecane possesses a good potential as a thermal energy storage material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural humic water was treated with ultraviolet (UV) light and UV + hydrogen peroxide . The effects on the dissolved organic carbon content (DOC), the UV-absorbance at 254 nm (UV-abs.), the molecular size distribution, pH, and mutagenic activity were monitored, and the identity and concentrations of the most abundant gas chromatographable organic degradation products were determined. The DOC content and the UV-abs. of the water decreased substantially during treatment with. The decreases were dependent on the time of irradiation (UV dose) as well as on the H2O2 dose applied. The humus macromolecules were degraded to smaller fragments during irradiation. At higher UV doses, however, part of the dissolved organic matter (DOM) was found to precipitate, probably as a result of polymerization. Oxalic acid, acetic acid, malonic acid, and n-butanoic acid were the most abundant degradation products detected. These acids were found to account for up to 20% and 80% of the DOM in UV- and waters, respectively. No mutagenic activity was generated by the UV irradiation or the treatment. It is further concluded that the substantial mutagenic activity formed during chlorination of humic waters cannot be decreased by using UV irradiation as a pretreatment step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

City Univ Hong Kong

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, the excel lent catalytic activity of highly ordered mesoporous carbons (OMCs) to the electrooxidation of nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H2O2) was described for the construction of electrochemical alcohol dehydrogenase (ADH) and glucose oxidase (GOD)-based biosensors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, the unique properties of highly ordered mesoporous carbons modified glassy carbon electrode (OMCs/GE) are illustrated from comparison with carbon nanotubes modified glassy carbon electrode (CNTs/GE) for the electrochemical sensing applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we investigated the electroluminescence (EL) mechanisms and processes of hole block material in the multilayer devices with Eu(TTA)(3)phen (TTA = thenoyltrifluoroacetone, phen = 1,10-phenanthroline) doped CBP (4,4'-N,N'-dicarbazolebiphenyl) as the light-emitting layer (EML). First, the hole block ability of 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP) was experimentally confirmed by comparing the EL spectra. With increasing hole injection, BCP emission emerges and increases gradually due to the increasing hole penetration from EML into the hole block layer (HBL).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rectangular AgIn(WO4)(2) nanotubes with a diameter range of 80 to 120 nm and length up to 2 mu m have been synthesized by a hydrothermal method. These nanotubes exhibit interesting white light emissions when using 320 nm as the excitation wavelength. A photocatalytic reaction for water decomposition to evolve K, was performed under UV irradiation, and the rate of H, evolution is nearly seven times that of the sample prepared by a solid-state reaction, which shows much higher photocatalytic activities compared with their bulk counterparts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[Ru(bpy)(3)](2+)-doped silica (RuSi) nanoparticles were synthesized by using a water/oil microemulsion method. Stable electrochemiluminescence (ECL) was obtained when the RuSi nanoparticles were immobilized on a glassy carbon electrode by using tripropylamine (TPA) as a coreactant. Furthermore, the ECL of the RuSi nanoparticles with layer-by-layer biomolecular coatings was investigated. Squential self-assembly of the polyelectrolytes and biomolecules on the RuSi nanoparticles gave nanocomposite suspensions, the ECL of which decreased on increasing the number of bilayers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel nano-scaled bulk hard material (W0.5Al0.5)C-Co with "rounded" grains was prepared by nanocrystalline "rounded" (W0.5Al0.5)C powders with "rounded" particle shape in this study. The nano-scaled "rounded" particles do not contain sharp edges, which form local tensile stress concentrations on loading of the composite, thus leading to improved toughness and reduced sensitivity to crack. Nanocrystalline (W0.5Al0.5)C powders with "rounded" particle shape were used as starting materials. X-ray diffraction, scanning electron microscopy, and transmission electron microscopy were used to characterize the samples.