198 resultados para sediment erosion
Resumo:
Changes in statistics (mean, sorting, and skewness) describing grain-size distributions have long been used to speculate on the direction of sediment transport. We present a simple model whereby the distributions of sediment in transport are related to their source by a sediment transfer function which defines the relative probability that a grain within each particular class interval will be eroded and transported. A variety of empirically derived transfer functions exhibit negatively skewed distributions (on a phi scale). Thus, when a sediment is being eroded, the probability of any grain going into transport increases with diminishing grain size throughout more than half of its size range. This causes the sediment in transport to be finer and more negatively skewed than its source, whereas the remaining sediment (a lag) must become relatively coarser and more positively skewed. Flume experiments show that the distributions of transfer functions change from having a highly negative skewness to being nearly symmetrical (although still negatively skewed) as the energy of the transporting process increases. We call the two extremes low-energy and high-energy transfer functions , respectively. In an expanded sediment-transport model, successive deposits in the direction of transport are related by a combination of two transfer functions. If energy is decreasing and the transfer functions have low-energy distributions, successive deposits will become finer and more negatively skewed. If, however, energy is decreasing, but the initial transfer function has a high-energy distribution, successive deposits will become coarser and more positively skewed. The variance of the distributions of lags, sediment in transport, and successive deposits in the down-current direction must eventually decrease (i.e., the sediments will become better sorted). We demonstrate that it is possible for variance first to increase, but suggest that, in reality, an increasing variance in the direction of transport will seldom be observed, particularly when grain-size distributions are described in phi units. This model describing changes in sediment distributions was tested in a variety of environments where the transport direction was known. The results indicate that the model has real-world validity and can provide a method to predict the directions of sediment transport
Resumo:
This study relates tidal channel cross-sectional area (A) to peak spring discharge (Q) via a physical mechanism, namely the stability shear stress ( tau sub(S)) just necessary to maintain a zero gradient in net along-channel sediment transport. It is assumed that if bed shear stress ( tau ) is greater than tau sub(S), net erosion will occur, increasing A, and reducing tau similar to (Q/A) super(2) back toward tau sub(S). If tau < tau sub(S) there will be net deposition, reducing A and increasing tau toward tau sub(S). A survey of the literature allows estimates of Q and A at 242 sections in 26 separate sheltered tidal systems. Assuming a single value of tau sub(S) characterizes the entire length of a given tidal channel, it is predicted that along-channel geometry will follow the relation Ah sub(R) super(1) super(/) super(6) similar to Q. Along-channel regressions of the form Ah sub(R) super(1) super(/) super(6) similar to Q super( beta ) give a mean observed value for beta of 1.00 plus or minus 0.06, which is consistent with this concept. Results indicate that a lower bound on tau sub(S) (and an upper bound on A) for stable channels is provided by the critical shear stress ( tau sub(C)) just capable of initiating sediment motion. Observed tau sub(S) is found to vary among all systems as a function of spring tidal range (R sub(sp)) according to the relation tau sub(S) approximately 2.3 R sub(sp) super(0.79) tau sub(C). Observed deviations from uniform tau sub(S) along individual channels are associated with along-channel variation in the direction of maximum discharge (i.e., flood-versus ebb-dominance).
Resumo:
The vertical growth of shoots of the seagrass Thalassia testudinum Banks ex Konig in four meadows, along a range of exposure to waves, in the Mexican Caribbean was examined to elucidate its magnitude and its relationship to sediment dynamics. Average internodal length varied between 0.17 and 12.75 mm, and was greatest in the meadow which experienced the greatest burial by sand waves moved by Hurricane Gilbert (September 1988). Internodal length showed annual cycles, confirmed by the flower scars always preceding or coinciding with the annual minimum internodal length. These annual cycles on the shoot allowed estimation of annual leaf production, which varied, on average, between 14.2 and 19.3 leaves per shoot year-1. High vertical shoot growth was associated with long internodes and high leaf production rate, which increased with increasing vertical shoot growth to a maximum of approximately 25 leaves per shoot year-1, with vertical growth of about 30 mm year-1 or more. Average internodal length showed substantial interannual differences from perturbations derived from the passage of Hurricane Gilbert. The growth response of the plants surviving moderate burial and erosion after the hurricane involved enhanced vertical growth and increased leaf production, and reduced vertical growth, respectively, after 1988. The variability in shoot vertical growth of T testudinum can be separated into seasonal changes in plant growth, and long-term variability associated with episodic perturbations involving sediment redistribution by hurricanes.
Resumo:
We measured delta C-13 of CO2, CH4, and acetate-methyl in profundal sediment of eutrophic Lake Dagow by incubation experiments in the presence and absence of methanogenic inhibitors chloroform, bromoethane sulfonate (BES), and methyl fluoride, which have different specificities. Methyl fluoride predominantly inhibits acetoclastic methanogenesis and affects hydrogenotrophic methanogenesis relatively little. Optimization of methyl fluoride concentrations resulted in complete inhibition of acetoclastic methanogenesis. Methane was then exclusively produced by hydrogenotrophic methanogenesis and thus allowed determination of the fractionation factors specific for this methanogenic pathway. Acetate, which was then no longer consumed, accumulated and allowed determination of the isotopic signatures of the fermentatively produced acetate. BES and chloroform also inhibited CH4 production and resulted in accumulation of acetate. The fractionation factor for hydrogenotrophic methanogenesis exhibited variability, e. g., it changed with sediment depth. The delta C-13 of the methyl group of the accumulated acetate was similar to the delta C-13 of sedimentary organic carbon, while that of the carboxyl group was by about 12 parts per thousand higher. However, the delta C-13 of the acetate was by about 5 parts per thousand lower in samples with uninhibited compared with inhibited acetoclastic methanogenesis, indicating unusual isotopic fractionation. The isotope data were used for calculation of the relative contribution of hydrogenotrophic vs. acetoclastic methanogenesis to total CH4 production. Contribution of hydrogenotrophic methanogenesis increased with sediment depth from about 35% to 60%, indicating that organic matter was only partially oxidized in deeper sediment layers.
Resumo:
Labyrinthulomycetes (Labyrinthulea) are ubiquitous marine osmoheterotrophic protists that appear to be important in decomposition of both allochthonous and autochthonous organic matter. We used a cultivation-independent method based on the labyrinthulomycete-specific primer LABY-Y to PCR amplify, clone, and sequence 68 nearly full-length 18S rDNA amplicons from 4 sediment and 3 seawater samples collected in estuarine habitats around Long Island, New York, USA. Phylogenetic analyses revealed that all 68 amplicons belonged to the Labyrinthulea. Only 15 of the 68 amplicons belonged to the thraustochytrid phylogenetic group (Thraustochytriidae). None of these 15 were similar to cultivated strains, and 11 formed a novel group. The remaining 53 amplicons belonged either to the labyrinthulid phylogenetic group (Labyrinthulidae) or to other families of Labyrinthulea. that have not yet been described. Of these amplicons, 37 were closely related to previously cultivated Aplanochytrium spp. and Oblongichytrium spp. Members of these 2 genera were also cultivated from 1 of the sediment samples. The 16 other amplicons were not closely related to cultivated strains, and 15 belonged to 5 groups of apparently novel labyrinthulomycetes. Most of the novel groups of amplicons also contained environmental sequences from surveys of protist diversity using universal 18S rDNA primers. Because the primer LABY-Y is biased against several groups of labyrinthulomycetes, particularly among the thraustochytrids, these results may underestimate the undiscovered diversity of labyrinthulomycetes.
Resumo:
Lake of the Woods (LOW) is an international waterbody spanning the Canadian provinces of Ontario and Manitoba, and the U.S. state of Minnesota. In recent years, there has been a perception that water quality has deteriorated in northern regions of the lake, with all increase in the frequency and intensity of toxin-producing cyanobacterial blooms. However, given the lack of long-term data these trends are difficult to verify. As a first step, we examine spatial and seasonal patterns in water quality in this highly complex lake on the Canadian Shield. Further, we examine surface sediment diatom assemblages across multiple sites to determine if they track within-take differences in environmental conditions. Our results show that there are significant spatial patterns in water quality in LOW. Principal Component Analysis divides the lake into three geographic zones based primarily on algal nutrients (i.e., total phosphorus, TP), with the highest concentrations at sites proximal to Rainy River. This variation is closely tracked by sedimentary diatom assemblages, with [TP] explaining 43% of the variation in diatom assemblages across sites. The close correlation between water quality and the surface sediment diatom record indicate that paleoecological models could be used to provide data on the relative importance of natural and anthropogenic sources of nutrients to the lake.
Resumo:
根据安塞水土保持试验站1993~2002年林地径流小区的降雨产流产沙的定位观测资料及2002年土壤含水量资料,分析了不同树种对坡面尺度降雨产流产沙及土壤水分的影响。结果表明:场降雨径流小区的产流量、产沙量与降雨量具有较好的相关性;多元回归分析表明,场降雨产流量和产沙量与降雨量和最大30min雨强的乘积呈正相关,与植被覆盖度呈负相关,场降雨产沙量回归方程复相关系数为0.253,各处理场降雨产流量回归方程复相关系数的变化范围为0.465~0.723,均达到了极显著的水平(P<0.01)。同时,各树种均具有良好的减流减沙功能,与农地相比,年均产流量和产沙量分别减少4.8%~52.9%和26.8%~86.0%;沙棘纯林及其混交林的减流减沙效益优于油松纯林。同时,沙棘纯林及其各混交林在造林初期就表现出良好的减流减沙效益,随着树龄的增长,其作用更加明显;而油松纯林在造林初期作用不明显,甚至出现产流量和产沙量大于农地的现象,但随着树龄的增长,减流减沙作用逐渐呈现并增大。沙棘纯林及其混交林30cm以下土壤含水量在整个生长季中均呈递减趋势,生长季初(4月份)土壤含水量最高,而生长季末(10月份)降到最低值。2002年沙棘纯林的...
Resumo:
鉴于至今还没有一个有效获取流域侵蚀产沙量的方法,在分析悬移质泥沙与侵蚀泥沙之间的数量与粒配关系的基础上,阐述了应用输沙量推演流域侵蚀量在理论上的可能性,但却存在着难点,且主要表现在水文站数量不足与区域分布不均、流域内的生态环境复杂与区域差异大、水文站输沙量观测记录起始时间不同步、及新技术应用存在时空条件的局限性。结合与侵蚀产沙和泥沙输移比相关的定性与定量指标,提出了应用输沙量推演流域侵蚀量的方法,即"层次类剔法",来计算与评估流域侵蚀量和泥沙输移比,具体的操作过程是首先制作一幅流域地貌类型地块图,然后是逐类型、逐类型地块的侵蚀量计算和沟道流域泥沙输移比的判断,最终获取流域不同地块的侵蚀强度和流域泥沙输移比。本研究结果可为水土流失监测点的选择提供科学依据,同时对解决流域的泥沙问题也有重要的启迪作用。
Resumo:
人工模拟放水冲刷试验研究结果表明 ,随放水冲刷强度的增大 ,不同土壤硝态氮、铵态氮、有机质和全氮流失加剧 ,泥沙全氮和有机质富集程度减少 ;当给不同土壤施等量的硝酸铵时 ,发现随径流流失化肥的铵态氮和硝态氮分别占施入量的 0 .9%~ 3 .5 %和 8.2 %~ 19.7% ,硝酸铵主要随径流流失 ,以泥沙颗粒流失量甚微 ;土壤侵蚀、有机质和全氮流失量与 >2 0 μm团聚体相关系数分别为 -0 .893 5、-0 .792 8和 -0 .815 1,2 0 μm直径的团聚体是区分土壤有机质和全氮流失的标准
Resumo:
研究结果表明 ,土壤有机质和全氮与 <1 0μm土壤颗粒相关系数分别为 0 .63 1 4和 0 .6750 ,与 <1 μm粘粒的相关系数分别达到 0 .72 54和 0 .73 2 9;有机质和全氮在泥沙中的富集现象主要由侵蚀泥沙 <1 μm粘粒富集造成 ;坡度与侵蚀泥沙粘粒、有机质和全氮的富集率的相关系数分别为 -0 .983 2、-0 .93 95和-0 .81 46。
Resumo:
延安燕沟流域属于水土流失治理的重点区,退耕还林(草)措施引起的生态环境改善和经济发展带动的山区道路建设压力对本地区侵蚀环境和侵蚀动力机制产生了巨大影响,坡面水土流失与道路水土流失对比关系发生了新变化。在坡面侵蚀得到初步治理的新环境下,道路侵蚀则上升为主要地位。依据燕沟流域2005年7月2日的5年一遇暴雨引起的不同土地利用类型下的侵蚀产沙监测结果,结合流域卡口站测得的流域产沙总量,分析各土地利用类型产沙量对流域总产沙量的贡献,并依据流域土地利用的演变,反演林草植被恢复与道路建设对流域泥沙来源的作用。研究结果表明:在次降雨条件下,道路的产沙强度为支道山路500 t/km2、干道山路3 163 t/km2、运油道路1万3500 t/km2,而农、林、草地的产沙强度为6~184 t/km2;道路产沙强度远大于农、林、草地的产沙强度:占流域面积1%的道路产沙量占总产沙量的42.3%,占流域面积70.5%的草地、灌木林地产沙量仅占流域的26.7%。退耕还林(草)措施使流域坡面产沙量大为降低,流域产沙量减少41.2%,但由于道路产沙量增加,抵消了减沙效益的58.0%,因此,黄土丘陵区植被恢复后,应将水土流失治理重点放在防止...