179 resultados para second order condition
Resumo:
Based oil rare equations of semiconductor laser, a symbolically-defined model for optical transmission system performance evaluation and network characterization in both time- and frequency domains is presented. The steady-state and small-signal characteristics, such as current-photon density curve, current-voltage curve, and input impedance, call be predicted from this model. Two important dynamic characteristics, second-order harmonic distortion and two-tone third-order intermodulation products, are evaluated under different driving conditions. Experiments show that the simulated results agree well with the published data. (c) 2007 Wiley Periodicals, Inc.
Resumo:
Novel guest nonlinear optical (NLO) chromophore molecules (4-nitrobenzene)-3-azo-9-ethylcarbazole (NAEC) were doped in poly (methyl methacrylate) (PMMA) host with a concentration of approximately 15% by weight. For a useful macroscopic electro-optic (EO) effect, these NLO molecules NAEC were arranged in a noncentrosymmetric structure in the host polymer by corona-onset poling at elevated temperature (COPET). For applying NAEC-PMMA polymer in optical devices such as EO switch, its optical properties have been investigated. The UV/Visible absorption spectra for the unpoled and poled polymer film were determined. The refractive index of the film was also determined from measurements of the coupling angles with the reflective intensity at 632.8 nm wavelength. Using the simple reflection technique, the EO coefficient 33 value was measured as 60 pm/V at 632.8 nm wavelength. The second-order nonlinear coefficient d(33) was characterized by the second-harmonic-generation (SHG) experimental setup and the calculated d(33) value reached 18.4 pm/V at 1064 nm wavelength. The relation between the second-order nonlinear coefficients d(33) and d(13) for the poled polymer film was also discussed in detail and the ratio d(33)/d(13) value was obtained as 3.3. (C) 2002 Kluwer Academic Publishers.
Resumo:
Films of polyetherketone doped with the chromophores Disperse Red 1 (DR1) and Disperse Red 13 (DR13) were prepared by spin-coating method. By the in situ Second-harmonic Generation (SHG) signal intensity measurement, the optimal poling temperatures were obtained. For the investigated polyetherketone polymer doped with DR1 (DR1/PEK-c) and polyetherketone polymer doped with DR13 (DR13/PEK-c) films, the optimal poling temperatures were 150degreesC and 140degreesC, respectively. Under the optimal poling conditions, the high second-order nonlinear optical coefficient chi(33)((2)) = 11.02 pm/V has been obtained for the DR1/PEK-c; and for DR13/PEK-c at the same conditions the coefficient is 17.9 pm/V. The SHG signal intensity DR1/PEK-c could maintain more than 80% of its initial value when the temperature was under 100degreesC, and the SHG signal intensity of the DR13/PEK-c could maintain more than 80% of its initial value when the temperature was under 135degreesC. (C) 2002 Kluwer Academic Publishers.
Resumo:
Three thermal organic second-order nonlinear optical chromophores were synthesized. The decomposition temperature was determined by DSC, and the absorption spectra was measured. The second-order polarizabilities at zero energy and the dispersion of second-order polarizabilities were measured by solvatochromic method. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Transient photoconductivity and its light-induced change were investigated by using a Model 4400 boxcar averager and signal processor for lightly boron-doped a-Si : H films. The transient photoconductivities of the sample were measured at an annealed state and light-soaked states. The transient decay process of the photoconductivity can be fitted fairly well by a second-order exponential decay function, which indicates that the decay process is related with two different traps. It is noteworthy that the photoconductivity of the film increases after light-soaking. This may be due to the deactivity of the boron acceptor B-4(-), and thus some of the boron atoms can no longer act as acceptors and drives E-F to shifts upward. Consequently, the number of effective recombination centers may be reduced and so the photoconductivity increases.
Resumo:
The polyetherketone (PEK-c) guest-host polymer films doped with (4'-nitro)-3-azo-9-ethyl-carbazole (NAEC) were prepared. The films were poled by corona-onset poling at elevated temperature (COPET). The orientational order parameter of the chromophores NAEC in poled polymer film was determined by measuring the absorption spectra of the films before and after being poled. By using the two-level model, the measured dispersion of the refractive index of the polymer film, and the dispersion of the first hyperpolarizability of chromophore NAEC, the dispersion of the macroscopic second-order nonlinear optical (NLO) and linear electrooptic (EO) coefficients was evaluated for the NAEC/PEK-c guest-host polymer film. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Raman scattering of nanocrystalline silicon embedded in SiO2 matrix is systematically investigated. It is found that the Raman spectra can be well fitted by 5 Lorentzian lines in the Raman shift range of 100-600 cm(-1). The two-phonon scattering is also observed in the range of 600-1100 cm(-1) The experimental results indicate that the silicon crystallites in the films consist of nanocrystalline phase and amorphous phase; both can contribute to the Raman scattering. Besides the red-shift of the first order optical phonon modes with the decreasing size of silicon nanocrystallites, we have also found an enhancement effect on the second order Raman scattering, and the size effect on their Raman shift.
Resumo:
A 7.8-mu m surface emitting second-order distributed feedback quantum cascade laser (DFB QCL) structure with metallized surface grating is studied. The modal property of this structure is described by utilizing coupled-mode theory where the coupling coefficients are derived from exact Floquet-Bloch solutions of infinite periodic structure. Based on this theory, the influence of waveguide structure and grating topography as well as device length on the laser performance is numerically investigated. The optimized surface emitting second-order DFB QCL structure design exhibits a high surface outcoupling efficiency of 22% and a low threshold gain of 10 cm(-1). Using a pi phase-shift in the centre of the grating, a high-quality single-lobe far-field radiation pattern is obtained.
Resumo:
The acid-base stabilities of Al-13 and Al-30 in polyaluminum coagulants during aging and after dosing into water were studied systematically using batch and flow-through acid-base titration experiments. The acid decomposition rates of both Al-13 and Al-30 increase rapidly with the decrease in solution pH. The acid decompositions of Al-13 and Al-30 with respect to H+ concentration are composed of two parallel first-order and second-order reactions, and the reaction orders are 1.169 and 1.005, respectively. The acid decomposition rates of Al-13 and Al-30 increase slightly when the temperature increases from 20 to ca. 35 A degrees C, but decrease when the temperature increases further. Al-30 is more stable than Al-13 in acidic solution, and the stability difference increases as the pH decreases. Al-30 is more possible to become the dominant species in polyaluminum coagulants than Al-13. The acid catalyzed decomposition and followed by recrystallization to form bayerite is one of the main processes that are responsible for the decrease of Al-13 and Al-30 in polyaluminum coagulants during storage. The deprotonation and polymerization of Al-13 and Al-30 depend on solution pH. The hydrolysis products are positively charged, and consist mainly of repeated Al-13 and Al-30 units rather than amorphous Al(OH)(3) precipitates. Al-30 is less stable than Al-13 upon alkaline hydrolysis. Al-13 is stable at pH < 5.9, while Al-30 lose one proton at the pH 4.6-5.75. Al-13 and Al-30 lose respective 5 and 10 protons and form [Al-13] (n) and [Al-30] (n) clusters within the pH region of 5.9-6.25 and 5.75-6.65, respectively. This indicates that Al-30 is easier to aggregate than Al-13 at the acidic side, but [Al-13] (n) is much easier to convert to Alsol-gel than [Al-30] (n) . Al-30 possesses better characteristics than Al-13 when used as coagulant because the hydrolysis products of Al-30 possess higher charges than that of Al-13, and [Al-30] (n) clusters exist within a wider pH range.
Resumo:
The spectral bandwidth of three-wave-mixing optical parametric amplification has been investigated. A general mathematical model for evaluating the spectral bandwidth of optical parametric amplification is developed with parametric bandwidth and gain bandwidth via three-wave noncollinear interactions. The spectral bandwidth is determined by expanding the wave-vector mismatch in a Taylor series and retaining terms through second order. The model takes into account the effects of crystal length, noncollinear angle, group velocity, group-velocity dispersion and gain coefficient. The relation between parametric bandwidth and gain bandwidth is clearly defined. The model is applied to a BBO OPA, a LBO OPA and a CLBO OPA.
Resumo:
An analytic closed form for the second- order or fourth- order Markovian stochastic correlation of attosecond sum- frequency polarization beat ( ASPB) can be obtained in the extremely Doppler- broadened limit. The homodyne detected ASPB signal is shown to be particularly sensitive to the statistical properties of the Markovian stochastic light. fields with arbitrary bandwidth. The physical explanation for this is that the Gaussian- amplitude. field undergoes stronger intensity. fluctuations than a chaotic. field. On the other hand, the intensity ( amplitude). fluctuations of the Gaussian- amplitude. field or the chaotic. field are always much larger than the pure phase. fluctuations of the phase-diffusion field. The field correlation has weakly influence on the ASPB signal when the laser has narrow bandwidth. In contrast, when the laser has broadband linewidth, the ASPB signal shows resonant- nonresonant cross correlation, and the sensitivities of ASPB signal to three Markovian stochastic models increase as time delay is increased. A Doppler- free precision in the measurement of the energy- level sum can be achieved with an arbitrary bandwidth. The advantage of ASPB is that the ultrafast modulation period 900as can still be improved, because the energy- level interval between ground state and excited state can be widely separated.
Resumo:
Based on the phase-conjugate polarization interference between two two-photon processes, we obtained an analytic closed form for the second-order or fourth-order Markovian stochastic correlation of the four-level attosecond sum-frequency polarization beat (FASPB) in the extremely Doppler-broadened limit. The homodyne-detected FASPB signal is shown to be particularly sensitive to the statistical properties of the Markovian stochastic light fields with arbitrary bandwidth. The different roles of the amplitude fluctuations and the phase fluctuations can be understood physically in the time-domain picture. The field correlation has a weak influence on the FASPB signal when the laser has narrow bandwidth. In contrast, when the laser has broadband linewidth, the FASPB signal shows resonant-nonresonant cross-correlation, and drastic difference for three Markovian stochastic fields. The maxima of the two two-photon signals are shifted from zero time delay to the opposite direction, and the signal exhibits damping oscillation when the laser frequency is off-resonant from the two-photon transition. A Doppler-free precision in the measurement of the energy-level sum can be achieved with an arbitrary bandwidth. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum frequency of energy levels.
Resumo:
Based on the phase-conjugate polarization interference between two-pathway excitations, we obtained an analytic closed form for the second-order or fourth-order Markovian stochastic correlation of the V three-level sum-frequency polarization beat (SFPB) in attosecond scale. Novel interferometric oscillatory behavior is exposed in terms of radiation-radiation, radiation-matter, and matter-matter polarization beats. The phase-coherent control of the light beams in the SFPB is subtle. When the laser has broadband linewidth, the homodyne detected SFPB signal shows resonant-nonresonant cross correlation, a drastic difference for three Markovian stochastic fields, and the autocorrelation of the SFPB exhibits hybrid radiation-matter detuning terahertz damping oscillation. As an attosecond ultrafast modulation process, it can be extended intrinsically to any sum frequency of energy levels. It has been also found that the asymmetric behaviors of the polarization beat signals due to the unbalanced controllable dispersion effects between the two arms of interferometer do not affect the overall accuracy in case using the SFPB to measure the Doppler-free energy-level sum of two excited states.
Resumo:
This article presents the results of near-resonant Raman scattering measurements on GaAs/AlAs superlattices at room temperature. A strong enhancement of GaAs LO phonon-even modes resulted owing to a dipole-allowed Frohlich interaction in superlattices. Similar to the previous results, the LO phonon-even modes in a polarized configuration are observed. In contrast to previous work, however, what we observed in depolarized configurations is the LO phonon-odd modes instead of even modes. It is confirmed that the selection rules for near-resonant Raman scattering from LO phonons in this kind of superlattices are the same as those for off-resonant scattering. From the second-order Raman scattering, it is confirmed that polarized second-order Raman scattering spectra consist of overtones and combinations of two even modes, and depolarized second-order Raman scattering spectra consist of combinations of an even mode and an odd mode. Our experimental results coincide with the predictions using the recently developed Huang-Zhu model. A brief discussion on interface modes and their combination with confined modes is also presented.
Resumo:
The near-resonance Raman scattering of GaAs/AlAs superlattices is investigated at room temperature. Owing to the resonance enhancement of Frohlich interaction, the scattering intensity of even LO confined modes with A1 symmetry becomes much stronger than that of odd modes with B2 symmetry. The even modes were observed in the polarized spectra, while the odd modes appear in the depolarized spectra as in the off-resonance case. The second-order Raman spectra show that the polarized spectra are composed of the overtone and combinations of even modes, while the depolarized spectra are composed of the combinations of one odd mode and one even mode. The results agree well with the selection rules predicted by the microscopic theory of Raman scattering in superlattices, developed recently by Huang and co-workers. In addition, the interface modes and the combinations of interface modes and confined modes are also observed in the two configurations.