156 resultados para fracture load
Resumo:
Recently, the size dependence of mechanical behaviors, particularly the yield strength and plastic deformation mode, of bulk metallic glasses (BMG) has created a great deal of interest. Contradicting conclusions have been drawn by different research groups, based on various experiments on different BMG systems. Based on in situ compression transmission electron microscopy (TEM) experiments on Zr41Ti14Cu12.5Ni10Be22.5 (Vit 1) nanopillars, this paper provides strong evidence that shear banding still prevails at specimen length scales as small as 150 nm in diameter. This is supported by in situ and ex situ images of shear bands, and by the carefully recorded displacement bursts under load control its well as load drops under displacement control. Finite element modeling of the stress state within the pillar shows that the unavoidable geometry constraints accompanying such experiments impart a strong effect on the experimental results, including non-uniform stress distributions and high level hydrostatic pressures. The seemingly improved compressive ductility is believed to be due to such geometry constraints. Observations underscore the notion that the mechanical behavior of metallic glasses, including strength and plastic deformation mode, is size independent at least in Vit 1. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Energy functions (or characteristic functions) and basic equations for ferroelectrics in use today are given by those for ordinary dielectrics in the physical and mechanical communications. Based on these basic equations and energy functions, the finite element computation of the nonlinear behavior of the ferroelectrics has been carried out by several research groups. However, it is difficult to process the finite element computation further after domain switching, and the computation results are remarkably deviating from the experimental results. For the crack problem, the iterative solution of the finite element calculation could not converge and the solutions for fields near the crack tip oscillate. In order to finish the calculation smoothly, the finite element formulation should be modified to neglect the equivalent nodal load produced by spontaneous polarization gradient. Meanwhile, certain energy functions for ferroelectrics in use today are not compatible with the constitutive equations of ferroelectrics and need to be modified. This paper proposes a set of new formulae of the energy functions for ferroelectrics. With regard to the new formulae of the energy functions, the new basic equations for ferroelectrics are derived and can reasonably explain the question in the current finite element analysis for ferroelectrics.
Resumo:
The influence of water on the brittle behavior of beta-cristobalite is studied by means of molecular dynamics (MD) simulation With the TTAM potential. Crack extension of mode 1 type is observed as the crack opening is filled LIP With water. The critical stress intensity factor K-lc(MD) is used to characterize the crack extension of MD simulation. The surface energy of SiO2 covered with layers of water is calculated at temperature of 300 K. Based oil the Griffith fracture criterion, the critical stress intensity factor K-lc(Griffith) is calculated, and it is in good agreement with that of MD simulation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
A new numerical procedure is proposed to investigate cracking behaviors induced by mismatch between the matrix phase and aggregates due to matrix shrinkage in cement-based composites. This kind of failure processes is simplified in this investigation as a purely spontaneous mechanical problem, therefore, one main difficulty during simulating the phenomenon lies that no explicit external load serves as the drive to propel development of this physical process. As a result, it is different from classical mechanical problems and seems hard to be solved by using directly the classical finite element method (FEM), a typical kind of "load -> medium -> response" procedures. As a solution, the actual mismatch deformation field is decomposed into two virtual fields, both of which can be obtained by the classical FEM. Then the actual response is obtained by adding together the two virtual displacement fields based on the principle of superposition. Then, critical elements are detected successively by the event-by-event technique. The micro-structure of composites is implemented by employing the generalized beam (GB) lattice model. Numerical examples are given to show the effectiveness of the method, and detailed discussions are conducted on influences of material properties.
Resumo:
Abstract: Experiments to determine the horizontal static bearing capacity are carried out first. The static bearing capacity is a reference for choosing the amplitudes of dynamic load. Then a series of experiments under dynamic horizontal load are carried out in laboratory to study the influences of factors, such as the scales of bucket, the amplitude and frequency of load, the density of soils etc.. The responses of bucket foundations in calcareous sand under horizontal dynamic load are analyzed according to the experimental results. The displacements of bucket and sand layer are analyzed.
Resumo:
Firstly, the main factors are obtained by use of dimensionless analysis. Secondly, the time scaling factors in centrifuge modeling of bucket foundations under dynamic load are analyzed based on dimensionless analysis and control- ling equation. A simplified method for dealing with the conflict of scaling factors of the inertial and the percolation in sand foundation is presented. The presented method is that the material for experiments is not changed while the effects are modified by perturbation method. Thirdly, the characteristic time of liquefaction state and the characteristic scale of affected zone are analyzed.
Resumo:
More and more piezoelectric materials and structures have been used for structure control in aviation and aerospace industry. More efficient and convenient computation method for large complex structure with piezoelectric actuation devices is required. A load simulation method of piezoelectric actuation is presented in this paper. By this method, the freedom degree of finite element simulation is significantly reduced, the difficulty in defining in-plane voltage for multi-layers piezoelectric composite is overcome and the transfer computation between material main direction and the element main direction is simplified. The concept of simulation load is comprehensible and suitable for engineers of structure strength in shape and vibration control, thereby is valuable for promoting the application of piezoelectric material and structures in practical aviation and aerospace fields.
Resumo:
The inducement of interface fracture is crucial to the analysis of interfacial adhesion between coating and substrate. For electroplated coating/metal substrate adhering materials with strong adhesion, interface cracking and coating spalling are difficult to be induced by conventional methods. In this paper an improved bending test named as T-bend test was conducted on a model coating system, i.e. electroplated chromium on a steel substrate. After the test, cross-sections of the coated materials were prepared to compare the failure behaviors under tensile strain and compressive strain induced by T-bend test. And the observation results show that coating cracking, interface cracking and partial spalling appear step by step. Based on experimental results, a new method may be proposed to rank the coated materials with strong inter-facial adhesion. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The relative compositions of bacterioplankton, phytoplankton, zooplankton and detritus of seston were studied during the course of inundation in a floodplain lake of central Changjiang (China). Peaks in bacterial biomass developed shortly after flooding, coinciding with the initial leaching of organic nutrients from vegetation submerged under floodwater, and again at high water, shortly before the climax of phytoplankton biomass. Rods predominated the bacterial carbon biomass. Phytoplankton developed a postflood bloom at initial falling, corresponding to the drainage of the lake water into the river. While minimal biomass occurred during the advent of flooding, most likely due to disturbance and dilution. Algal biomass was usually dominated by Chlorophyta. Highest biomass of zooplankton was recorded at the end of the flooding in connection with the decline in turbidity, and once again at early drainage, closely associated with high phytoplankton biomass. Copepods (mainly nauplii) always constituted the majority of zooplankton carbon biomass. Peaks in detrital carbon concentrations were recorded at rising and falling water phases, corresponding respectively to the riverine discharge and decomposition of macrophyte mats. At rising water phase, CPOC was abundant. While during other water phases, this predominance was shifted to FPOC alone. Taken together, average contribution of bacterioplankton, phytoplankton, zooplankton and detritus to total seston carbon was 3.29, 21.21, 6.83 and 68.67 %, respectively.
Resumo:
We investigate the nanoscale periodic corrugation (NPC) structures on the dynamic fracture surface of a typical tough bulk metallic glass, submitted to high-velocity plate impact and scanned by atomic force microscopy (AFM). The detrended fluctuation analysis (DFA) of the recorded AFM profiles reveals that the valley landscapes of the NPC are nearly memoryless, characterized by Hurst parameter of 0.52 and exhibiting a self-similar fractal character with the dimension of about 1.48. Our findings confirm the existence of the “quasi-cleavage” fracture underpinned by tension transformation zones (TTZs) in metallic glasses.
Resumo:
A theoretical model about the size-dependent interface energy between two thin films with different materials is developed by considering the chemical bonding contribution based on the thermodynamic expressions and the structure strain contribution based on the mechanical characteristics. The interface energy decreases with reducing thickness of thin films, and is determined by such available thermodynamic and mechanical parameters as the melting entropy, the melting enthalpy, the shear modulus of two materials, etc. The predicted interface energies of some metal/MgO and metal/Al2O3 interfaces based on the model are consistent with the results based on the molecular mechanics calculation. Furthermore, the interface fracture properties of Ag/MgO and Ni/Al2O3 based on the atomistic simulation are further compared with each other. The fracture strength and the toughness of the interface with the smaller structure interface energy are both found to be lower. The intrinsic relations among the interface energy, the interface strength, and the fracture toughness are discussed by introducing the related interface potential and the interface stress. The microscopic interface fracture toughness is found to equal the structure interface energy in nanoscale, and the microscopic fracture strength is proportional to the fracture toughness. (C) 2010 American Institute of Physics. [doi:10.1063/1.3501090]
Resumo:
The high cycle and Very-High-Cycle Fatigue (VHCF) properties of a structural steel with smooth and notched specimens were studied by employing a rotary bending machine with frequency of 52.5 Hz. For smooth specimens, VHCF failure did occur at fatigue cycles of 7.1 x 10(8) with the related S-N curve of stepwise tendency. Scanning Electron Microscopy (SEM) was used for the observations of the fracture surfaces It shows that for smooth specimens the crack origination is surface mode in the failure regime of less than 10(7) cycles While at VHCF regime, the material failed from the nonmetallic inclusion lies in the interior of material, leading to the formation of fisheye pattern. The dimensions of crack initiation region were measured and discussed with respect to the number of cycles to failure. The mechanism analysis by means of low temperature fracture technique shows that the nonmetallic inclusion in the interior of specimen tends to debond from surrounding matrix and form a crack. The crack propagates and results to the final failure. The stress intensity factor and fatigue strength were calculated to investigate the crack initiation properties. VHCF study on the notched specimens shows that the obtained S-N curve decreases continuously. SEM analysis reveals that multiple crack origins are dominant on specimen surface and that fatigue crack tends to initiate from the surface of the specimen. Based on the fatigue tests and observations, a model of crack initiation was used to describe the transition of fatigue initiation site from subsurface to surface for smooth and notched specimens. The model reveals the influences of load, grain size, inclusion size and surface notch on the crack initiation transition. (C) 2010 Elsevier Ltd. All rights reserved