132 resultados para auger electron spectroscopy
Resumo:
Deep level transient spectroscopy (DLTS) technique was used to investigate deep electron states in n-type Al-doped ZnS1-xTex epilayers grown by molecular fiction epitaxy (MBE), Deep level transient Fourier spectroscopy (DLTFS) spectra of the Al-doped ZnS1-xTex (x = 0. 0.017, 0.04 and 0.046. respectively) epilayers reveal that At doping leads to the formation of two electron traps at 0.21 and 0.39 eV below the conduction hand. 1)DLTFS results suggest that in addition to the rules of Te as a component of [lie alloy as well as isoelectronic centers, Te is also involved in the formation of all electron trip, whose energy level relative to the conduction hand decreases a, Te composition increases.
Resumo:
Cross sections for electron impact excitation of lithium from the ground state 1s(2)2s to the excited states 1s2s(2), 1s2p(2), 1s2snp (n = 2-5), 1s2sns (n = 3-5), 1s2pns (n = 3-5), and 1s2pnp (n = 3-5) are calculated by using a full relativistic distorted wave method. The latest experimental electron energy loss spectra for inner-shell electron excitations of lithium at a given incident electron energy of 2500 eV [Chin. Phys. Lett. 25 (2008) 3649] have been reproduced by the present theoretical investigation excellently. At the same time, the structures of electron energy loss spectra of lithium at low incident electron energy are also predicted theoretically, it is found that the electron energy loss spectra in the energy region of 55-57 eV show two-peak structures.
Resumo:
Single-electron capture in 14 keV q(-1) Ar15+...18++He collisions is investigated both experimentally and theoretically. Partial cross sections and projectile scattering angle dependencies have been deduced from the target ion recoil momenta measured by the COLTRIMS technique. The comparison with close-coupling results obtained from a two-centre extension of the basis generator method yields good overall agreement, demonstrating the applicability of close-coupling calculations to collision systems involving highly charged ions in charge states up to 18+.
Resumo:
The relative partial cross sections for C-13(6+)-Ar collisions at 4.15-11.08 keV/u incident energy are measured. The cross-section ratios sigma(2E)/sigma(SC), sigma(3E)/sigma(SC), sigma(4E)/sigma(SC) and sigma(5E)/sigma(SC) are approximately the constants of 0.51 +/- 0.05, 0.20 +/- 0.03, 0.06 +/- 0.03 and 0.02 +/- 0.01 in this region. The significance of the multi-electron process in highly charged ions (HCIs) with argon collisions is demonstrated (sigma(ME)/sigma(SC) as high as 0.79 +/- 0.06). In multi-electron processes, it is shown that transfer ionization is dominant while pure electron capture is weak and negligible. For all reaction channels, the cross-sections are independent of the incident energy in the present energy region, which is in agreement with the static characteristic of classic models, i.e. the molecular Coulomb over-the-barrier model (MCBM), the extended classical over-the-barrier (ECBM) and the semiempirical scaling laws (SL). The result is compared with these classical models and with our previous work of C-13(6+)-Ne collisions
Resumo:
Employing the recoil ion momentum spectroscopy we investigate the collision between He2+ and argon atoms. By measuring the recoil longitudinal momentum the energy losses of projectile are deduced for capture reaction channels. It is found that in most cases for single- and double-electron capture, the inner electron in the target atom is removed, the recoil ion is in singly or multiply excited states (hollow ion is formed), which indicates that electron correlation plays an important role in the process. The captured electrons prefer the ground states of the projectile. It is experimentally demonstrated that the average energy losses are directly related to charge transfer and electronic configuration.
Resumo:
The X-rays induced during interaction of highly charged argon ions with a beryllium surface are reported. It is found that the K shell X-ray yield of single particle during interaction of hydrogen-like argon ions was 3.6 x 10(-3), which is five orders more than that of heliumlike argon ions. Moreover, due to the screening the 2s electron, no K X-ray was emitted during interaction of lithium-like argon ions with the beryllium surface. It is also found that the X-ray spectrum induced by Ar17+ interacting with residual gases is very different from that induced by Ar17+ interacting with the surfaces, that provided an experimental evidence for the existence of the hollow atoms below the surface.
Resumo:
In this paper, the capabilities of laser-induced break down spectroscopy (LIBS) for rapid analysis to multi-component plant are illustrated using a 1064 nm laser focused onto the surface of folium lycii. Based on homogeneous plasma assumption, nine of essential micronutrients in folium lycii are identified. Using Saha equation and Boltzmann plot method electron density and plasma temperature are obtained, and the irrelative concentration (Ca, Mg, Al, Si, Ti, Na, K, Li, and Sr) are obtained employing a semi-quantitative method.
Resumo:
Horseradish peroxidase (HRP) was incorporated into multiwalled carbon nanotube/thionine/Au (MTAu) composite film by electrostatic interactions between positively charged HRP and negatively charged MTAu composite. The results of electrochemical impedance spectroscopy (EIS) confirmed adsorption of HRP on the surface of MTAu modified GC electrode.
Resumo:
Macromolecule-protected sub-micrometer polyhedral gold nanocrystals have been facilely prepared by heating an aqueous solution containing poly (N-vinyl-2-pyrrolidone) (PVP) and HAuCl4 without adding other reducing agents. Scanning electron microscopy (SEM), energy-dispersive x-ray spectroscopy (EDX), ultraviolet-visible-near-infrared spectroscopy (UV-vis-NIR), and x-ray diffraction (XRD) were employed to characterize the obtained polyhedral gold nanocrystals. It is found that the 10:1 molar ratio of PVP to gold is a key factor for obtaining quasi-monodisperse polyhedral gold nanocrystals. Furthermore, the application of polyhedral gold nanocrystals in surface-enhanced Raman scattering (SERS) was investigated by using 4-aminothiophenol (4-ATP) as a probe molecule. The results indicated that the sub-micrometer polyhedral gold nanocrystals modified on the ITO substrate exhibited higher SERS activity compared to the traditional gold nanoparticle modified film. The enhancement factor (EF) on polyhedral gold nanocrystals was about six times larger than that obtained on aggregated gold nanoparticles (similar to 25 nm).
Resumo:
Quasi-reversible and direct electrochemistry of cytochrome c (cyt. c) has been obtained at a novel electrochemical interface constructed by self-assembling gold nanoparticles (GNPs) onto a three-dimensional silica gel network, without polishing or any modification of the surface. A cleaned gold electrode was first immersed in a hydrolyzed sol of the precursor (3-mercaptopropyl)-trimethoxysilane to assemble three-dimensional silica gel, then the GNPs were chemisorbed onto the thiol groups of the sol-gel network and modified the kinetic barrier of this self-assembled silicate film. Cyclic voltammetry and AC impendance spectroscopy were performed to evaluate electrochemical properties of the as prepared interface. These nanoparticle inhibits the adsorption of cyt. c onto bare electrode and acts as a bridge of electron transfer between protein and electrode.
Resumo:
We used colloidal An to enhance the amount of antibody immobilized on a gold electrode and ultimately monitored the interaction of antigen-antibody by impedance measurement. Self-assembly of 6 nm (diameter) colloidal An onto the self-assembled monolayers (SAMs) of 4-aminothiophenol modified gold electrode resulted in an easier attachment of antibody. The redox reactions of [Fe(CN)(6)](4-)/[Fe(CN)(6)](3-) on the gold surface were blocked due to the procedures of self-assembly of 4-aminothiophenol and antibody immobilization, which were investigated by cyclic voltammetry and impedance spectroscopy. The interaction of antigen with grafted antibody recognition layers was carried out by soaking the modified electrode into a phosphate buffer at pH 7.4 with various concentrations of antigen at 37 degreesC for 30 min. The antibody recognition layers and their interactions with various concentrations of antigen could be detected by measurements of the impedance change. The results show that this method has good correlation for detection of Hepatitis B virus surface antigen in the range of 0.5-200 mug/l and a detection limit of about 50 ng/l.
Resumo:
The redox-induced conformational equilibrium of cytochrome c (cyt c) adsorbed on DNA-modified metal electrode and the interaction mechanism of DNA with cyt c have been studied by electrochemical, spectroscopic and spectroelectrochemical techniques. The results indicate that the external electric field induces potential-dependent coordination equilibrium of the adsorbed cyt c between its oxidized state (with native six-coordinate low-spin and non-native five-coordinate high-spin heme configuration) and its reduced state (with native six-coordinate low-spin heme configuration) on DNA-modified metal electrode. The strong interactions between DNA and cyt c induce the self-aggregation of cyt c adsorbed on DNA. The orientational distribution of cyt c adsorbed on DNA-modified metal electrode is potential-dependent, which results in the deviation from an ideal Nernstian behavior of the adsorbed cyt c at high electrode potentials. The electric-field-induced increase in the activation barrier of proton-transfer steps attributed to the rearrangement of the hydrogen bond network and the self-aggregation of cyt c upon adsorption on DNA-modified electrode strongly decrease the interfacial electron transfer rate.
Resumo:
Gold nanoparticles were used to enhance the immobilization amount and retain the immunoactivity of recombinant dust mite allergen Der f2 immobilized on a glassy carbon electrode (GCE). The interaction between allergen and antibody was studied by electrochemical impedance spectroscopy (EIS). Self-assembled Au colloid layer (Phi = 16 nm) deposited on (3-mercaptopropyl)trimethoxysilane (MPTS)-modified GCE offered a basis to control the immobilization of allergen Der f2. The impedance measurements were based on the charge transfer kinetics of the [Fe(CN)(6)](3-/4-) redox pair, compared with bare GCE, the immobilization of allergen Der f2 and the allergen-antibody interaction that occurred on the electrode surface altered the interfacial electron transfer resistance and thereby slowed down the charge transfer kinetics by reducing the active area of the electrode or by preventing the redox species in electrolyte solution from approaching the electrode. The interactions of allergen with various concentrations of monoclonal antibody were also monitored through the change of impedance response. The results showed that the electron transfer resistance increased with increasing concentrations of monoclonal antibody.
Resumo:
Three bidentate ligands, 4-phenyl-2-(2-pyridyl)-quinoline (ppq), 6-(carbazol-9-yl)-4-phenyl-2-(2-pyridyl)-quinoline (cpq) and 6-diphenylamino-4-phenyl-2-(2-pyridyl)-quinoline (dpq) and their zinc(II) complexes, have been designed and synthesized. The crystal structure of [Zn(ppq)(2)Cl]PF6 shows that the central zinc atom is coordinated with one chloride and four nitrogen atoms from two ligands. The introduction of an electron-donating substituent such as carbazole or an aromatic amine group at the 6-position of the quinoline moiety can generate colored tunable Zn complexes, and the photoluminescence (PL) wavelength was modulated from 418 nm for [Zn(ppq)(2)Cl]PF6 to 591 nm for [Zn(cpq)(2)Cl]PF6 and 638 nm for [Zn(dpq)(2)Cl]PF6 in CH2Cl2 solution. The electroluminescence spectrum of [Zn(dpq)(2)Cl]PF6 exhibits pure red light emission with the Commission Internationale de L'Eclairage (CIE) coordinates (0.63, 0.36) and a maximum at 648 nm.
Resumo:
The difference in the electrochemical behavior of hydroquinone and pyrocatechol. at platinum and gold surfaces was analyzed using voltammetry and attenuated total reflection Fourier transform infrared spectroscopy. The results show that the hydroquinone derivatives are adsorbed on a gold surface with vertical orientation, which makes the electron transfer between the bulk species and the electrode surface easier than that in the case of flat adsorption of hydroquinone derivatives that occurs at a platinum electrode. The formation of the vertical conformation and the rapid process of electron transfer were also confirmed by quantum chemistry calculations. In addition, the pre-adsorbed iodine on the electrodes played a key role on the adsorbed configuration and. electron transfer of redox species.